No Arabic abstract
By employing a novel perturbation approach and the method of invariant sets of descending flow, this manuscript investigates the existence and multiplicity of sign-changing solutions to a class of semilinear Kirchhoff equations in the following form $$ -left(a+ bint_{R^3}| abla u|^2right)triangle {u}+V(x)u=f(u),,,xinR^3, $$ where $a,b>0$ are constants, $Vin C(R^3,R)$, $fin C(R,R)$. The methodology proposed in the current paper is robust, in the sense that, the monotonicity condition for the nonlinearity $f$ and the coercivity condition of $V$ are not required. Our result improves the study made by Y. Deng, S. Peng and W. Shuai ({it J. Functional Analysis}, 3500-3527(2015)), in the sense that, in the present paper, the nonlinearities include the power-type case $f(u)=|u|^{p-2}u$ for $pin(2,4)$, in which case, it remains open in the existing literature that whether there exist infinitely many sign-changing solutions to the problem above without the coercivity condition of $V$. Moreover, {it energy doubling} is established, i.e., the energy of sign-changing solutions is strictly large than two times that of the ground state solutions for small $b>0$.
In this paper, we consider the following Kirchhoff type equation $$ -left(a+ bint_{R^3}| abla u|^2right)triangle {u}+V(x)u=f(u),,,xinR^3, $$ where $a,b>0$ and $fin C(R,R)$, and the potential $Vin C^1(R^3,R)$ is positive, bounded and satisfies suitable decay assumptions. By using a new perturbation approach together with a new version of global compactness lemma of Kirchhoff type, we prove the existence and multiplicity of bound state solutions for the above problem with a general nonlinearity. We especially point out that neither the corresponding Ambrosetti-Rabinowitz condition nor any monotonicity assumption is required for $f$. Moreover, the potential $V$ may not be radially symmetry or coercive. As a prototype, the nonlinear term involves the power-type nonlinearity $f(u) = |u|^{p-2}u$ for $pin (2, 6)$. In particular, our results generalize and improve the results by Li and Ye (J.Differential Equations, 257(2014): 566-600), in the sense that the case $pin(2,3]$ is left open there.
In this paper, we consider the existence and asymptotic properties of solutions to the following Kirchhoff equation begin{equation}label{1} onumber - Bigl(a+bint_{{R^3}} {{{left| { abla u} right|}^2}}Bigl) Delta u =lambda u+ {| u |^{p - 2}}u+mu {| u |^{q - 2}}u text { in } mathbb{R}^{3} end{equation} under the normalized constraint $int_{{mathbb{R}^3}} {{u}^2}=c^2$, where $a!>!0$, $b!>!0$, $c!>!0$, $2!<!q!<!frac{14}{3}!<! p!leq!6$ or $frac{14}{3}!<!q!<! p!leq! 6$, $mu!>!0$ and $lambda!in!R$ appears as a Lagrange multiplier. In both cases for the range of $p$ and $q$, the Sobolev critical exponent $p!=!6$ is involved and the corresponding energy functional is unbounded from below on $S_c=Big{ u in H^{1}({mathbb{R}^3}): int_{{mathbb{R}^3}} {{u}^2}=c^2 Big}$. If $2!<!q!<!frac{10}{3}$ and $frac{14}{3}!<! p!<!6$, we obtain a multiplicity result to the equation. If $2!<!q!<!frac{10}{3}!<! p!=!6$ or $frac{14}{3}!<!q!<! p!leq! 6$, we get a ground state solution to the equation. Furthermore, we derive several asymptotic results on the obtained normalized solutions. Our results extend the results of N. Soave (J. Differential Equations 2020 $&$ J. Funct. Anal. 2020), which studied the nonlinear Schr{o}dinger equations with combined nonlinearities, to the Kirchhoff equations. To deal with the special difficulties created by the nonlocal term $({int_{{R^3}} {left| { abla u} right|} ^2}) Delta u$ appearing in Kirchhoff type equations, we develop a perturbed Pohozaev constraint approach and we find a way to get a clear picture of the profile of the fiber map via careful analysis. In the meantime, we need some subtle energy estimates under the $L^2$-constraint to recover compactness in the Sobolev critical case.
We study the nonlinear eigenvalue problem for the p-Laplacian, and more general problem constituting the Fucik spectrum. We are interested in some vanishing properties of sign changing solutions to these problems. Our method is applicable in the plane.
In this paper, we study the existence and asymptotic properties of solutions to the following fractional Kirchhoff equation begin{equation*} left(a+bint_{mathbb{R}^{3}}|(-Delta)^{frac{s}{2}}u|^{2}dxright)(-Delta)^{s}u=lambda u+mu|u|^{q-2}u+|u|^{p-2}u quad hbox{in $mathbb{R}^3$,} end{equation*} with a prescribed mass begin{equation*} int_{mathbb{R}^{3}}|u|^{2}dx=c^{2}, end{equation*} where $sin(0, 1)$, $a, b, c>0$, $2<q<p<2_{s}^{ast}=frac{6}{3-2s}$, $mu>0$ and $lambdainmathbb{R}$ as a Lagrange multiplier. Under different assumptions on $q<p$, $c>0$ and $mu>0$, we prove some existence results about the normalized solutions. Our results extend the results of Luo and Zhang (Calc. Var. Partial Differential Equations 59, 1-35, 2020) to the fractional Kirchhoff equations. Moreover, we give some results about the behavior of the normalized solutions obtained above as $murightarrow0^{+}$.
This paper is concerned with the existence of ground states for a class of Kirchhoff type equation with combined power nonlinearities begin{equation*} -left(a+bint_{mathbb{R}^{3}}| abla u(x)|^{2}right) Delta u =lambda u+|u|^{p-2}u+u^{5}quad text{for some} lambdainmathbb{R},quad xinmathbb{R}^{3}, end{equation*} with prescribed $L^{2}$-norm mass begin{equation*} int_{mathbb{R}^{3}}u^{2}=c^{2} end{equation*} in Sobolev critical case and proves that the equation has a couple of solutions $(u_{c},lambda_{c})in S(c)times mathbb{R}$ for any $c>0$, $a,b >0$ and $frac{14}{3}leq p< 6,$ where $S(c)={uin H^{1}(mathbb{R}^{3}):int_{mathbb{R}^{3}}u^{2}=c^{2}}.$ textbf{Keywords:} Kirchhoff type equation; Critical nonlinearity; Normalized ground states oindent{AMS Subject Classification:, 37L05; 35B40; 35B41.}