Do you want to publish a course? Click here

Identifying vital nodes by Achlioptas process

59   0   0.0 ( 0 )
 Added by Linyuan Lu
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The vital nodes are the ones that play an important role in the organization of network structure or the dynamical behaviours of networked systems. Previous studies usually applied the node centralities to quantify the importance of nodes. Realizing that the percolation clusters are dominated by local connections in the subcritical phase and by global connections in the supercritical phase, in this paper we propose a new method to identify the vital nodes via a competitive percolation process that is based on an Achlioptas process. Compared with the existing node centrality indices, the new method performs overall better in identifying the vital nodes that maintain network connectivity and facilitate network synchronization when considering different network structure characteristics, such as link density, degree distribution, assortativity, and clustering. We also find that our method is more tolerant of noisy data and missing data. More importantly, compared with the unique ranking list of nodes given by most centrality methods, the randomness of the percolation process expands the possibility space of the optimal solutions, which is of great significance in practical applications.



rate research

Read More

The Identification of the influential nodes in networks is one of the most promising domains. In this paper, we present an improved iterative resource allocation (IIRA) method by considering the centrality information of neighbors and the influence of spreading rate for a target node. Comparing with the results of the Susceptible Infected Recovered (SIR) model for four real networks, the IIRA method could identify influential nodes more accurately than the tradition IRA method. Specially, in the Erdos network, the Kendalls tau could be enhanced 23% when the spreading rate is 0.12. In the Protein network, the Kendalls tau could be enhanced 24% when the spreading rate is 0.08.
152 - Qian Li , Tao Zhou , Linyuan Lv 2013
Identifying influential spreaders is crucial for understanding and controlling spreading processes on social networks. Via assigning degree-dependent weights onto links associated with the ground node, we proposed a variant to a recent ranking algorithm named LeaderRank [L. Lv et al., PLoS ONE 6 (2011) e21202]. According to the simulations on the standard SIR model, the weighted LeaderRank performs better than LeaderRank in three aspects: (i) the ability to find out more influential spreaders, (ii) the higher tolerance to noisy data, and (iii) the higher robustness to intentional attacks.
How to identify influential nodes in social networks is of theoretical significance, which relates to how to prevent epidemic spreading or cascading failure, how to accelerate information diffusion, and so on. In this Letter, we make an attempt to find emph{effective multiple spreaders} in complex networks by generalizing the idea of the coloring problem in graph theory to complex networks. In our method, each node in a network is colored by one kind of color and nodes with the same color are sorted into an independent set. Then, for a given centrality index, the nodes with the highest centrality in an independent set are chosen as multiple spreaders. Comparing this approach with the traditional method, in which nodes with the highest centrality from the emph{entire} network perspective are chosen, we find that our method is more effective in accelerating the spreading process and maximizing the spreading coverage than the traditional method, no matter in network models or in real social networks. Meanwhile, the low computational complexity of the coloring algorithm guarantees the potential applications of our method.
Identifying emerging influential or popular node/item in future on network is a current interest of the researchers. Most of previous works focus on identifying leaders in time evolving networks on the basis of network structure or nodes activity separate way. In this paper, we have proposed a hybrid model which considers both, nodes structural centrality and recent activity of nodes together. We consider that the node is active when it is receiving more links in a given recent time window, rather than in the whole past life of the node. Furthermore our model is flexible to implement structural rank such as PageRank and webpage click information as activity of the node. For testing the performance of our model, we adopt the PageRank algorithm and linear preferential attachment based model as the baseline methods. Experiments on three real data sets (i.e Movielens, Netflix and Facebook wall post data set), we found that our model shows better performance in terms of finding the emerging influential nodes that were not popular in past.
Using the finite-size scaling, we have investigated the percolation phase transitions of evolving random networks under a generalized Achlioptas process (GAP). During this GAP, the edge with minimum product of two connecting cluster sizes is taken with a probability $p$ from two randomly chosen edges. This model becomes the ErdH os-Renyi network at $p=0.5$ and the random network under the Achlioptas process at $p=1$. Using both the fixed point of $s_2/s_1$ and the straight line of $ln s_1$, where $s_1$ and $s_2$ are the reduced sizes of the largest and the second largest cluster, we demonstrate that the phase transitions of this model are continuous for $0.5 le p le 1$. From the slopes of $ln s_1$ and $ln (s_2/s_1)$ at the critical point we get the critical exponents $beta$ and $ u$, which depend on $p$. Therefore the universality class of this model should be characterized by $p$ also.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا