Do you want to publish a course? Click here

Identifying Influential Spreaders by Weighted LeaderRank

138   0   0.0 ( 0 )
 Added by Tao Zhou
 Publication date 2013
and research's language is English




Ask ChatGPT about the research

Identifying influential spreaders is crucial for understanding and controlling spreading processes on social networks. Via assigning degree-dependent weights onto links associated with the ground node, we proposed a variant to a recent ranking algorithm named LeaderRank [L. Lv et al., PLoS ONE 6 (2011) e21202]. According to the simulations on the standard SIR model, the weighted LeaderRank performs better than LeaderRank in three aspects: (i) the ability to find out more influential spreaders, (ii) the higher tolerance to noisy data, and (iii) the higher robustness to intentional attacks.



rate research

Read More

How to identify influential nodes in social networks is of theoretical significance, which relates to how to prevent epidemic spreading or cascading failure, how to accelerate information diffusion, and so on. In this Letter, we make an attempt to find emph{effective multiple spreaders} in complex networks by generalizing the idea of the coloring problem in graph theory to complex networks. In our method, each node in a network is colored by one kind of color and nodes with the same color are sorted into an independent set. Then, for a given centrality index, the nodes with the highest centrality in an independent set are chosen as multiple spreaders. Comparing this approach with the traditional method, in which nodes with the highest centrality from the emph{entire} network perspective are chosen, we find that our method is more effective in accelerating the spreading process and maximizing the spreading coverage than the traditional method, no matter in network models or in real social networks. Meanwhile, the low computational complexity of the coloring algorithm guarantees the potential applications of our method.
We propose an efficient and accurate measure for ranking spreaders and identifying the influential ones in spreading processes in networks. While the edges determine the connections among the nodes, their specific role in spreading should be considered explicitly. An edge connecting nodes i and j may differ in its importance for spreading from i to j and from j to i. The key issue is whether node j, after infected by i through the edge, would reach out to other nodes that i itself could not reach directly. It becomes necessary to invoke two unequal weights wij and wji characterizing the importance of an edge according to the neighborhoods of nodes i and j. The total asymmetric directional weights originating from a node leads to a novel measure si which quantifies the impact of the node in spreading processes. A s-shell decomposition scheme further assigns a s-shell index or weighted coreness to the nodes. The effectiveness and accuracy of rankings based on si and the weighted coreness are demonstrated by applying them to nine real-world networks. Results show that they generally outperform rankings based on the nodes degree and k-shell index, while maintaining a low computational complexity. Our work represents a crucial step towards understanding and controlling the spread of diseases, rumors, information, trends, and innovations in networks.
214 - Qi Zeng , Ying Liu , Liming Pan 2021
Identifying the most influential spreaders is important to understand and control the spreading process in a network. As many real-world complex systems can be modeled as multilayer networks, the question of identifying important nodes in multilayer network has attracted much attention. Existing studies focus on the multilayer network structure, while neglecting how the structural and dynamical coupling of multiple layers influence the dynamical importance of nodes in the network. Here we investigate on this question in an information-disease coupled spreading dynamics on multiplex networks. Firstly, we explicitly reveal that three interlayer coupling factors, which are the two-layer relative spreading speed, the interlayer coupling strength and the two-layer degree correlation, significantly impact the spreading influence of a node on the contact layer. The suppression effect from the information layer makes the structural centrality on the contact layer fail to predict the spreading influence of nodes in the multiplex network. Then by mapping the coevolving spreading dynamics into percolation process and using the message-passing approach, we propose a method to calculate the size of the disease outbreaks from a single seed node, which can be used to estimate the nodes spreading influence in the coevolving dynamics. Our work provides insights on the importance of nodes in the multiplex network and gives a feasible framework to investigate influential spreaders in the asymmetrically coevolving dynamics.
With great theoretical and practical significance, identifying the node spreading influence of complex network is one of the most promising domains. So far, various topology-based centrality measures have been proposed to identify the node spreading influence in a network. However, the node spreading influence is a result of the interplay between the network topology structure and spreading dynamics. In this paper, we build up the systematic method by combining the network structure and spreading dynamics to identify the node spreading influence. By combining the adjacent matrix $A$ and spreading parameter $beta$, we theoretical give the node spreading influence with the eigenvector of the largest eigenvalue. Comparing with the Susceptible-Infected-Recovered (SIR) model epidemic results for four real networks, our method could identify the node spreading influence more accurately than the ones generated by the degree, K-shell and eigenvector centrality. This work may provide a systematic method for identifying node spreading influence.
The Identification of the influential nodes in networks is one of the most promising domains. In this paper, we present an improved iterative resource allocation (IIRA) method by considering the centrality information of neighbors and the influence of spreading rate for a target node. Comparing with the results of the Susceptible Infected Recovered (SIR) model for four real networks, the IIRA method could identify influential nodes more accurately than the tradition IRA method. Specially, in the Erdos network, the Kendalls tau could be enhanced 23% when the spreading rate is 0.12. In the Protein network, the Kendalls tau could be enhanced 24% when the spreading rate is 0.08.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا