Do you want to publish a course? Click here

Magnetic charges relaxation propelled electricity in two-dimensional magnetic honeycomb lattice

324   0   0.0 ( 0 )
 Added by George Yumnam
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Emerging new concepts, such as magnetic charge dynamics in two-dimensional magnetic material, can provide novel mechanism for spin based electrical transport at macroscopic length. In artificial spin ice of single domain elements, magnetic charges relaxation can create an efficient electrical pathway for conduction by generating fluctuations in local magnetic field that couple with conduction electrons spins. In a first demonstration, we show that the electrical conductivity is propelled by more than an order of magnitude at room temperature due to magnetic charge defects sub-picosecond relaxation in artificial magnetic honeycomb lattice. The direct evidence to the proposed electrical conduction mechanism in two-dimensional frustrated magnet points to the untapped potential for spintronic applications in this system.



rate research

Read More

A quantum magnetic state due to magnetic charges is never observed, even though they are treated as quantum mechanical variable in theoretical calculations. Here, we demonstrate the occurrence of a novel quantum disordered state of magnetic charges in nanoengineered magnetic honeycomb lattice of ultra-small connecting elements. The experimental research, performed using spin resolved neutron scattering, reveals a massively degenerate ground state, comprised of low integer and energetically forbidden high integer magnetic charges, that manifests cooperative paramagnetism at low temperature. The system tends to preserve the degenerate configuration even under large magnetic field application. It exemplifies the robustness of disordered correlation of magnetic charges in 2D honeycomb lattice. The realization of quantum disordered ground state elucidates the dominance of exchange energy, which is enabled due to the nanoscopic magnetic element size in nanoengineered honeycomb. Consequently, an archetypal platform is envisaged to study quantum mechanical phenomena due to emergent magnetic charges.
84 - Z.-X. Li , C. Wang , Yunshan Cao 2018
We study the collective dynamics of a two-dimensional honeycomb lattice of magnetic skyrmions. By performing large-scale micromagnetic simulations, we find multiple chiral and non-chiral edge modes of skyrmion oscillations in the lattice. The non-chiral edge states are due to the Tamm-Shockley mechanism, while the chiral ones are topologically protected against structure defects and hold different handednesses depending on the mode frequency. To interpret the emerging multiband nature of the chiral edge states, we generalize the massless Thieles equation by including a second-order inertial term of skyrmion mass as well as a third-order non-Newtonian gyroscopic term, which allows us to model the band structure of skrymion oscillations. Theoretical results compare well with numerical simulations. Our findings uncover the importance of high order effects in strongly coupled skyrmions and are helpful for designing novel topological devices.
The aggregation of superparamagnetic iron oxide (SPIO) nanoparticles decreases the transverse nuclear magnetic resonance (NMR) relaxation time T2 of adjacent water molecules measured by a Carr-Purcell-Meiboom-Gill (CPMG) pulse-echo sequence. This effect is commonly used to measure the concentrations of a variety of small molecules. We perform extensive Monte Carlo simulations of water diffusing around SPIO nanoparticle aggregates to determine the relationship between T2 and details of the aggregate. We find that in the motional averaging regime T2 scales as a power law with the number N of nanoparticles in an aggregate. The specific scaling is dependent on the fractal dimension d of the aggregates. We find T2 N^{-0.44} for aggregates with d=2.2, a value typical of diffusion limited aggregation. We also find that in two-nanoparticle systems, T2 is strongly dependent on the orientation of the two nanoparticles relative to the external magnetic field, which implies that it may be possible to sense the orientation of a two-nanoparticle aggregate. To optimize the sensitivity of SPIO nanoparticle sensors, we propose that it is best to have aggregates with few nanoparticles, close together, measured with long pulse-echo times.
170 - C. Siegert , A. Ghosh , M. Pepper 2007
We show the existence of intrinsic localized spins in mesoscopic high-mobility GaAs/AlGaAs heterostructures. Non-equilibrium transport spectroscopy reveals a quasi-regular distribution of the spins, and indicates that the spins interact indirectly via the conduction electrons. The interaction between spins manifests in characteristic zero-bias anomaly near the Fermi energy, and indicates gate voltage-controllable magnetic phases in high-mobility heterostructures. To address this issue further, we have also designed electrostatically tunable Hall devices, that allow a probing of Hall characteristics at the active region of the mesoscopic devices. We show that the zero field Hall coefficient has an anomalous contribution, which can be attributed to scattering by the localized spins. The anomalous contribution can be destroyed by an increase in temperature, source drain bias, or field range.
Tunable magnetic interactions in high-mobility nonmagnetic semiconductor heterostructures are centrally important to spin-based quantum technologies. Conventionally, this requires incorporation of magnetic impurities within the two-dimensional (2D) electron layer of the heterostructures, which is achieved either by doping with ferromagnetic atoms, or by electrostatically printing artificial atoms or quantum dots. Here we report experimental evidence of a third, and intrinsic, source of localized spins in high-mobility GaAs/AlGaAs heterostructures, which are clearly observed in the limit of large setback distance (=80 nm) in modulation doping. Local nonequilibrium transport spectroscopy in these systems reveals existence of multiple spins, which are located in a quasi-regular manner in the 2D Fermi sea, and mutually interact at temperatures below 100 milliKelvin via the Ruderman-Kittel-Kasuya-Yosida (RKKY) indirect exchange. The presence of such a spin-array, whose microscopic origin appears to be disorder-bound, simulates a 2D lattice-Kondo system with gate-tunable energy scales.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا