No Arabic abstract
We study the collective dynamics of a two-dimensional honeycomb lattice of magnetic skyrmions. By performing large-scale micromagnetic simulations, we find multiple chiral and non-chiral edge modes of skyrmion oscillations in the lattice. The non-chiral edge states are due to the Tamm-Shockley mechanism, while the chiral ones are topologically protected against structure defects and hold different handednesses depending on the mode frequency. To interpret the emerging multiband nature of the chiral edge states, we generalize the massless Thieles equation by including a second-order inertial term of skyrmion mass as well as a third-order non-Newtonian gyroscopic term, which allows us to model the band structure of skrymion oscillations. Theoretical results compare well with numerical simulations. Our findings uncover the importance of high order effects in strongly coupled skyrmions and are helpful for designing novel topological devices.
Emerging new concepts, such as magnetic charge dynamics in two-dimensional magnetic material, can provide novel mechanism for spin based electrical transport at macroscopic length. In artificial spin ice of single domain elements, magnetic charges relaxation can create an efficient electrical pathway for conduction by generating fluctuations in local magnetic field that couple with conduction electrons spins. In a first demonstration, we show that the electrical conductivity is propelled by more than an order of magnitude at room temperature due to magnetic charge defects sub-picosecond relaxation in artificial magnetic honeycomb lattice. The direct evidence to the proposed electrical conduction mechanism in two-dimensional frustrated magnet points to the untapped potential for spintronic applications in this system.
A stable skyrmion, representing the smallest realizable magnetic texture, could be an ideal element for ultra-dense magnetic memories. Here, we review recent progress in the field of skyrmionics, which is concerned with studies of tiny whirls of magnetic configurations for novel memory and logic applications, with a particular emphasis on antiskyrmions. Magnetic antiskyrmions represent analogs of skyrmions with opposite topological charge. Just like skyrmions, antiskyrmions can be stabilized by the Dzyaloshinskii-Moriya interaction, as has been demonstrated in a recent experiment. Here, we emphasize differences between skyrmions and antiskyrmions, e.g., in the context of the topological Hall effect, skyrmion Hall effect, as well as nucleation and stability. Recent progress suggests that anitskyrmions can be potentially useful for many device applications. Antiskyrmions offer advantages over skyrmions as they can be driven without the Hall-like motion, offer increased stability due to dipolar interactions, and can be realized above room temperature.
Quantum materials that host a flat band, such as pseudospin-1 lattices and magic-angle twisted bilayer graphene, can exhibit drastically new physical phenomena including unconventional superconductivity, orbital ferromagnetism, and Chern insulating behaviors. We report a surprising class of electronic in-gap edge states in pseudospin-1 materials without the conventional need of band-inversion topological phase transitions or introducing magnetism via an external magnetic type of interactions. In particular, we find that, in two-dimensional gapped (insulating) Dirac systems of massive spin-1 quasiparticles, in-gap edge modes can emerge through only an {em electrostatic potential} applied to a finite domain. Associated with these unconventional edge modes are spontaneous formation of pronounced domain-wall spin textures, which exhibit the feature of out-of-plane spin-angular momentum locking on both sides of the domain boundary and are quite robust against boundary deformations and impurities despite a lack of an explicit topological origin. The in-gap modes are formally three-component evanescent wave solutions, akin to the Jackiw-Rebbi type of bound states. Such modes belong to a distinct class due to the following physical reasons: three-component spinor wave function, unusual boundary conditions, and a shifted flat band induced by the external scalar potential. Not only is the finding of fundamental importance, but it also paves the way for generating highly controllable in-gap edge states with emergent spin textures using the traditional semiconductor gate technology. Results are validated using analytic calculations of a continuum Dirac-Weyl model and tight-binding simulations of realistic materials through characterizations of local density of state spectra and resonant tunneling conductance.
We theoretically study electronic properties of a graphene sheet on xy plane in a spatially nonuniform magnetic field, $B = B_0 hat{z}$ in one domain and $B = B_1 hat{z}$ in the other domain, in the quantum Hall regime and in the low-energy limit. We find that the magnetic edge states of the Dirac fermions, formed along the boundary between the two domains, have features strongly dependent on whether $B_0$ is parallel or antiparallel to $B_1$. In the parallel case, when the Zeeman spin splitting can be ignored, the magnetic edge states originating from the $n=0$ Landau levels of the two domains have dispersionless energy levels, contrary to those from the $n e 0$ levels. Here, $n$ is the graphene Landau-level index. They become dispersive as the Zeeman splitting becomes finite or as an electrostatic step potential is additionally applied. In the antiparallel case, the $n=0$ magnetic edge states split into electron-like and hole-like current-carrying states. The energy gap between the electron-like and hole-like states can be created by the Zeeman splitting or by the step potential. These features are attributed to the fact that the pseudo-spin of the magnetic edge states couples to the direction of the magnetic field. We propose an Aharonov-Bohm interferometry setup in a graphene ribbon for experimental study of the magnetic edge states.
The Luttinger liquid (LL) model of one-dimensional (1D) electronic systems provides a powerful tool for understanding strongly correlated physics including phenomena such as spin-charge separation. Substantial theoretical efforts have attempted to extend the LL phenomenology to two dimensions (2D), especially in models of closely packed perfect arrays of 1D quantum wires, each being described as a LL. For instance, such coupled-wire models have been successfully used to construct 2D anisotropic non-Fermi liquids, various quantum Hall states, topological phases, and quantum spin liquids. Despite these exciting theoretical developments, an experimental demonstration of high-quality arrays of 1D LLs suitable for realizing these models remains absent. Here we report the experimental realization of 2D arrays of 1D LLs with crystalline quality in a moire superlattice made of twisted bilayer tungsten ditelluride (tWTe$_{2}$). Originating from the anisotropic lattice of the monolayer, the moire pattern of tWTe$_{2}$ hosts identical, parallel 1D electronic channels, separated by a fixed nanoscale distance, which is tunable by the twist angle between layers. At a twist angle of ~ 5 degrees, we find that hole-doped tWTe$_{2}$ exhibits exceptionally large transport anisotropy with a resistance ratio of ~ 1000 between two orthogonal in-plane directions, suggesting the formation of 1D channels. The conductance measurement reveals a power-law scaling behavior, consistent with the formation of a 2D anisotropic phase that resembles an array of LLs. Our results open the door for realizing a variety of 2D correlated and topological quantum phases based on coupled-wire models and LL physics.