Do you want to publish a course? Click here

Resummation of quantum radiation reaction in plane waves

143   0   0.0 ( 0 )
 Added by Greger Torgrimsson
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We propose a new approach to obtain the momentum expectation value of an electron in a high-intensity laser, including multiple photon emissions and loops. We find a recursive formula that allows us to obtain the $mathcal{O}(alpha^n)$ term from $mathcal{O}(alpha^{n-1})$, which can also be expressed as an integro-differential equation. In the classical limit we obtain the solution to the Landau-Lifshitz equation to all orders. We show how spin-dependent quantum radiation reaction can be obtained by resumming both the energy expansion as well as the $alpha$ expansion.



rate research

Read More

69 - Greger Torgrimsson 2021
In a previous paper we proposed a new method based on resummations for studying radiation reaction of an electron in a plane-wave electromagnetic field. In this paper we use this method to study the electron momentum expectation value for a circularly polarized monochromatic field with $a_0=1$, for which standard locally-constant-field methods cannot be used. We also find that radiation reaction has a significant effect on the induced polarization, as compared to the results without radiation reaction, i.e. the Sokolov-Ternov formula for a constant field, or the zero result for a circularly monochromatic field. We also study the Abraham-Lorentz-Dirac equation using Borel-Pade resummations.
Radiation reaction is the influence of the electromagnetic field emitted by a charged particle on the dynamics of the particle itself. Here we report experimental radiation emission spectra from ultrarelativistic positrons in silicon in a regime where both quantum and radiation-reaction effects dominate the dynamics of the positrons. We found that each positron emits multiple photons with energy comparable to its own energy, revealing the importance of quantum photon recoil. Moreover, the shape of the emission spectra indicates that photon emissions occur in a nonlinear regime where positrons absorb several quanta from the crystal field. Our theoretical analysis shows that only a full quantum theory of radiation reaction is capable of explaining the experimental results, with radiation-reaction effects arising from the recoils undergone by the positrons during multiple photon emissions. This experiment is the first fundamental test of quantum electrodynamics in a new regime where the dynamics of charged particles is determined not only by the external electromagnetic fields but also by the radiation-field generated by the charges themselves. Future experiments carried out in the same line will be able to, in principle, also shed light on the fundamental question about the structure of the electromagnetic field close to elementary charges.
This work is dedicated to the study of radiation reaction signatures in the framework of classical and quantum electrodynamics. Since there has been no distinct experimental validation of radiation reaction and its underlying equations so far and its impact is expected to be substantial for the construction of new experimental devices, e.g., quantum x-free electron lasers, a profound understanding of radiation reaction effects is of special interest. Here, we describe how the inclusion of quantum radiation reaction effects changes the dynamics of ultra-relativistic electron beams colliding with intense laser pulses significantly. Thereafter, the angular distribution of emitted radiation is demonstrated to be strongly altered in the quantum framework, if in addition to single photon emission also higher order photon emissions are considered. Furthermore, stimulated Raman scattering of an ultra-intense laser pulse in plasmas is examined and forward Raman scattering is found to be significantly increased by the inclusion of radiation reaction effects in the classical regime. The numerical simulations in this work show the feasibility of an experimental verification of the predicted effects with presently available lasers and electron accelerators.
117 - Y. Hadad , L. Labun , J. Rafelski 2010
The goal of this paper is twofold: to explore the response of classical charges to electromagnetic force at the level of unity in natural units and to establish a criterion that determines physical parameters for which the related radiation-reaction effects are detectable. In pursuit of this goal, the Landau-Lifshitz equation is solved analytically for an arbitrary (transverse) electromagnetic pulse. A comparative study of the radiation emission of an electron in a linearly polarized pulse for the Landau-Lifshitz equation and for the Lorentz force equation reveals the radiation-reaction dominated regime, in which radiation-reaction effects overcome the influence of the external fields. The case of a relativistic electron that is slowed down by a counter propagating electromagnetic pulse is studied in detail. We further show that when the electron experiences acceleration of order unity, the dynamics of the Lorentz force equation, the Landau-Lifshitz equation and the Lorentz-Abraham-Dirac equation all result in different radiation emission that could be distinguished in experiment. Finally, our analytic and numerical results are compared with those appearing in the literature.
We show how to derive a consistent quantum theory of radiation reaction of a non-relativistic point-dipole quantum oscillator by including the dynamical fluctuations of the position of the dipole. The proposed non-linear theory displays neither runaway solutions nor acausal behaviour without requiring additional assumptions. Furthermore, we show that quantum (zero-point) fluctuations of the electromagnetic field are necessary to fulfil the second law of thermodynamics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا