Do you want to publish a course? Click here

Experimental Evidence of Quantum Radiation Reaction in Aligned Crystals

103   0   0.0 ( 0 )
 Added by Tobias Wistisen
 Publication date 2017
  fields
and research's language is English




Ask ChatGPT about the research

Radiation reaction is the influence of the electromagnetic field emitted by a charged particle on the dynamics of the particle itself. Here we report experimental radiation emission spectra from ultrarelativistic positrons in silicon in a regime where both quantum and radiation-reaction effects dominate the dynamics of the positrons. We found that each positron emits multiple photons with energy comparable to its own energy, revealing the importance of quantum photon recoil. Moreover, the shape of the emission spectra indicates that photon emissions occur in a nonlinear regime where positrons absorb several quanta from the crystal field. Our theoretical analysis shows that only a full quantum theory of radiation reaction is capable of explaining the experimental results, with radiation-reaction effects arising from the recoils undergone by the positrons during multiple photon emissions. This experiment is the first fundamental test of quantum electrodynamics in a new regime where the dynamics of charged particles is determined not only by the external electromagnetic fields but also by the radiation-field generated by the charges themselves. Future experiments carried out in the same line will be able to, in principle, also shed light on the fundamental question about the structure of the electromagnetic field close to elementary charges.



rate research

Read More

The dynamics of energetic particles in strong electromagnetic fields can be heavily influenced by the energy loss arising from the emission of radiation during acceleration, known as radiation reaction. When interacting with a high-energy electron beam, todays lasers are sufficiently intense to explore the transition between the classical and quantum radiation reaction regimes. We report on the observation of radiation reaction in the collision of an ultra-relativistic electron beam generated by laser wakefield acceleration ($varepsilon > 500$ MeV) with an intense laser pulse ($a_0 > 10$). We measure an energy loss in the post-collision electron spectrum that is correlated with the detected signal of hard photons ($gamma$-rays), consistent with a quantum (stochastic) description of radiation reaction. The generated $gamma$-rays have the highest energies yet reported from an all-optical inverse Compton scattering scheme, with critical energy $varepsilon_{rm crit} > $ 30 MeV.
69 - Greger Torgrimsson 2021
In a previous paper we proposed a new method based on resummations for studying radiation reaction of an electron in a plane-wave electromagnetic field. In this paper we use this method to study the electron momentum expectation value for a circularly polarized monochromatic field with $a_0=1$, for which standard locally-constant-field methods cannot be used. We also find that radiation reaction has a significant effect on the induced polarization, as compared to the results without radiation reaction, i.e. the Sokolov-Ternov formula for a constant field, or the zero result for a circularly monochromatic field. We also study the Abraham-Lorentz-Dirac equation using Borel-Pade resummations.
142 - Greger Torgrimsson 2021
We propose a new approach to obtain the momentum expectation value of an electron in a high-intensity laser, including multiple photon emissions and loops. We find a recursive formula that allows us to obtain the $mathcal{O}(alpha^n)$ term from $mathcal{O}(alpha^{n-1})$, which can also be expressed as an integro-differential equation. In the classical limit we obtain the solution to the Landau-Lifshitz equation to all orders. We show how spin-dependent quantum radiation reaction can be obtained by resumming both the energy expansion as well as the $alpha$ expansion.
This work is dedicated to the study of radiation reaction signatures in the framework of classical and quantum electrodynamics. Since there has been no distinct experimental validation of radiation reaction and its underlying equations so far and its impact is expected to be substantial for the construction of new experimental devices, e.g., quantum x-free electron lasers, a profound understanding of radiation reaction effects is of special interest. Here, we describe how the inclusion of quantum radiation reaction effects changes the dynamics of ultra-relativistic electron beams colliding with intense laser pulses significantly. Thereafter, the angular distribution of emitted radiation is demonstrated to be strongly altered in the quantum framework, if in addition to single photon emission also higher order photon emissions are considered. Furthermore, stimulated Raman scattering of an ultra-intense laser pulse in plasmas is examined and forward Raman scattering is found to be significantly increased by the inclusion of radiation reaction effects in the classical regime. The numerical simulations in this work show the feasibility of an experimental verification of the predicted effects with presently available lasers and electron accelerators.
The first experimental results of a new quantum method for calculating nuclear temperature and density of fragmenting heavy ions is presented. This method is based on fluctuations in the event quadrupole momentum and fragment multiplicity distributions of light Fermions. The cal- culated temperatures are lower than those obtained with a similar classical method. Quenching of the normalized multiplicity distributions of light fermions due to Pauli blocking is also observed. These results indicate a need for a quantum treatment when dealing with statistical properties of fragmenting heavy-ions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا