No Arabic abstract
A subset of QuantISED Sensor PIs met virtually on May 26, 2020 to discuss a response to a charge by the DOE Office of High Energy Physics. In this document, we summarize the QuantISED sensor community discussion, including a consideration of HEP science enabled by quantum sensors, describing the distinction between Quantum 1.0 and Quantum 2.0, and discussing synergies/complementarity with the new DOE NQI centers and with research supported by other SC offices. Quantum 2.0 advances in sensor technology offer many opportunities and new approaches for HEP experiments. The DOE HEP QuantISED program could support a portfolio of small experiments based on these advances. QuantISED experiments could use sensor technologies that exemplify Quantum 2.0 breakthroughs. They would strive to achieve new HEP science results, while possibly spinning off other domain science applications or serving as pathfinders for future HEP science targets. QuantISED experiments should be led by a DOE laboratory, to take advantage of laboratory technical resources, infrastructure, and expertise in the safe and efficient construction, operation, and review of experiments. The QuantISED PIs emphasized that the quest for HEP science results under the QuantISED program is distinct from the ongoing DOE HEP programs on the energy, intensity, and cosmic frontiers. There is robust evidence for the existence of particles and phenomena beyond the Standard Model, including dark matter, dark energy, quantum gravity, and new physics responsible for neutrino masses, cosmic inflation, and the cosmic preference for matter over antimatter. Where is this physics and how do we find it? The QuantISED program can exploit new capabilities provided by quantum technology to probe these kinds of science questions in new ways and over a broader range of science parameters than can be achieved with conventional techniques.
We report on the performance of a monitoring system for a prototype calorimeter for the BTeV experiment that uses Lead Tungstate crystals coupled with photomultiplier tubes. The tests were carried out at the 70 GeV accelerator complex at Protvino, Russia.
The ultracold neutron (UCN) source at Los Alamos National Laboratory (LANL), which uses solid deuterium as the UCN converter and is driven by accelerator spallation neutrons, has been successfully operated for over 10 years, providing UCN to various experiments, as the first production UCN source based on the superthermal process. It has recently undergone a major upgrade. This paper describes the design and performance of the upgraded LANL UCN source. Measurements of the cold neutron spectrum and UCN density are presented and compared to Monte Carlo predictions. The source is shown to perform as modeled. The UCN density measured at the exit of the biological shield was $184(32)$ UCN/cm$^3$, a four-fold increase from the highest previously reported. The polarized UCN density stored in an external chamber was measured to be $39(7)$ UCN/cm$^3$, which is sufficient to perform an experiment to search for the nonzero neutron electric dipole moment with a one-standard-deviation sensitivity of $sigma(d_n) = 3times 10^{-27}$ $ecdot$cm.
In this paper, we describe the design, construction and performance of an apparatus installed in the Aberdeen Tunnel laboratory in Hong Kong for studying spallation neutrons induced by cosmic-ray muons under a vertical rock overburden of 611 meter water equivalent (m.w.e.). The apparatus comprises of six horizontal layers of plastic-scintillator hodoscopes for determining the direction and position of the incident cosmic-ray muons. Sandwiched between the hodoscope planes is a neutron detector filled with 650 kg of liquid scintillator doped with about 0.06% of Gadolinium by weight for improving the efficiency of detecting the spallation neutrons. Performance of the apparatus is also presented.
The liquid scintillator (LS) has been widely utilized in the past, running and future neutrino experiments, and requirement to the LS radio-purity is higher and higher. The water extraction is a powerful method to remove soluble radioactive nuclei, and a mini-extraction station has been constructed. To evaluate the extraction efficiency and optimize the operation parameters, a setup to load radioactivity to LS and a laboratory scale setup to measure radioactivity which use Bi^{212}-Po^{212}-Pb^{208} cascade decay are developed. Experiences from laboratory study will be useful to large scale water extraction plants design and the optimization of working in future.
This article reports the characterization of two High Purity Germanium detectors performed by extracting and comparing their efficiencies using experimental data and Monte Carlo simulations. The efficiencies were calculated for pointlike $gamma$-ray sources as well as for extended calibration sources. Characteristics of the detectors such as energy linearity, energy resolution, and full energy peak efficiencies are reported from measurements performed on surface laboratories. The detectors will be deployed in a $gamma$-ray assay facility that will be located in the first underground laboratory in Mexico, Laboratorio Subterraneo de Mineral del Chico (LABChico), in the Comarca Minera UNESCO Global Geopark