Do you want to publish a course? Click here

Study of the exfoliation and functionalization of graphene from graphite flakes with plasma discharge in solution

174   0   0.0 ( 0 )
 Added by Stephane Cuynet
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Graphene flakes were produced by nanosecond plasma discharge at atmospheric pressure between an electrode and the surface of distilled water, in which were placed graphite flakes. The discharge ionizes the gas and forms free radicals on the surface of the water, functionalizing the graphite flakes in solution. The plasma also gives enough energy to break the Van der Waals bonds between the graphene layers but not enough to break the covalent C-C bonds within the layers. Transmission electron microscopy confirmed the hexagonal structure of graphene sheets, and showed that they were monocrystalline. No contamination was found in the obtained nanomaterial. An unknown phenomenon has been found in the activated distilled water, making its electrical conductivity decrease with an increasing temperature. An acidification of the water is observed. The gas in which the discharge takes place plays a major role on the process, no exfoliation is observed if plasmogen argon gas is used.



rate research

Read More

Highly Oriented Pyrolytic Graphite was exfoliated via pulsed discharge plasma in liquid nitrogen. The potential mechanisms involved were investigated by observing the treated surface of the graphitic material and the obtained particles. Non-exfoliating defects from the plasma treatment were observed and experimental parameter were modified to counteract those. One experiment was performed without exposing the HOPG directly to the discharges so as to better understand the plasma role. The exfoliated particles were observed via TEM and SEM to evaluate the defects, the size, the purity and the crystallinity but no quantitative characterization of their thickness was possible so the actual number of layer of each particle is unknown. Nonetheless, few layers graphene (FLG) was successfully exfoliated through this process. The proposed mechanisms were extrapolated from the observation of the damaged HOPG surface and the obtained particles but the correlation found does not prove causation.
Synthesis of graphene with reduced use of chemical reagents is essential for manufacturing scale-up and to control its structure and properties. In this paper, we report on a novel chemical-free mechanism of graphene exfoliation from graphite using laser impulse. Our experimental setup consists of a graphite slab irradiated with an Nd:YAG laser of wavelength 532 nm and 10 ns pulse width. The results show the formation of graphene layers with conformational morphology from electron microscopy and Raman spectra. Based on the experimental results, we develop a simulation set up within the framework of the molecular dynamics that supplies the laser-induced electromagnetic energies to atoms in the graphite slab. We investigate the influence of different laser fluence on the exfoliation process of graphene. The variations in inter-layer interaction energy and inter-layer distance are the confirmative measures for the possible graphene layer formation. The simulation results confirm the exfoliation of a single layer graphene sheet for the laser power ranging from 100x10^(-14) to 2000x10^(-14) J/nm2. With an increase of laser fluence from 2000x10^(-14) to 4000x10^(-14) J/nm2, there is an increase in the graphene yield via the layer-after-layer exfoliation. The bridging bond dynamics between the successive graphene layers govern the possibility of second-layer exfoliation. The experimental and simulation observations are useful and promising for producing chemical-free graphene on a large scale for industrial and commercial applications.
The authors proposed a simple model for the lattice thermal conductivity of graphene in the framework of Klemens approximation. The Gruneisen parameters were introduced separately for the longitudinal and transverse phonon branches through averaging over phonon modes obtained from the first-principles. The calculations show that Umklapp-limited thermal conductivity of graphene grows with the increasing linear dimensions of graphene flakes and can exceed that of the basal planes of bulk graphite when the flake size is on the order of few micrometers. The obtained results are in agreement with experimental data and reflect the two-dimensional nature of phonon transport in graphene.
Spin orbit interaction can be strongly boosted when a heavy element is embedded into an inversion asymmetric crystal field. A simple structure to realize this concept in a 2D crystal contains three atomic layers, a middle one built up from heavy elements generating strong atomic spin-orbit interaction and two neighboring atomic layers with different electron negativity. BiTeI is a promising candidate for such a 2D crystal, since it contains heavy Bi layer between Te and I layers. Recently the bulk form of BiTeI attracted considerable attention due to its giant Rashba interaction, however, 2D form of this crystal was not yet created. In this work we report the first exfoliation of single layer BiTeI using a recently developed exfoliation technique on stripped gold. Our combined scanning probe studies and first principles calculations show that SL BiTeI flakes with sizes of 100 $mu$m were achieved which are stable at ambient conditions. The giant Rashba splitting and spin-momentum locking of this new member of 2D crystals open the way towards novel spintronic applications and synthetic topological heterostructures.
Electrochemical exfoliation is one of the most promising methods for scalable production of graphene. However, limited understanding of its Raman spectrum as well as lack of measurement standards for graphene strongly limit its industrial applications. In this work we show a systematic study of the Raman spectrum of electrochemically exfoliated graphene, produced using different electrolytes and different types of solvents in varying amounts. We demonstrate that no information on the thickness can be extracted from the shape of the 2D peak as this type of graphene is defective. Furthermore, the number of defects and the uniformity of the samples strongly depend on the experimental conditions, including post-processing. Under specific conditions, formation of short conductive trans-polyacetylene chains has been observed. Our Raman analysis provides guidance for the community on how to get information on defects coming from electrolyte, temperature and other experimental conditions, by making Raman spectroscopy a powerful metrology tool.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا