No Arabic abstract
Non-stationarity is one thorny issue in multi-agent reinforcement learning, which is caused by the policy changes of agents during the learning procedure. Current works to solve this problem have their own limitations in effectiveness and scalability, such as centralized critic and decentralized actor (CCDA), population-based self-play, modeling of others and etc. In this paper, we novelly introduce a $delta$-stationarity measurement to explicitly model the stationarity of a policy sequence, which is theoretically proved to be proportional to the joint policy divergence. However, simple policy factorization like mean-field approximation will mislead to larger policy divergence, which can be considered as trust region decomposition dilemma. We model the joint policy as a general Markov random field and propose a trust region decomposition network based on message passing to estimate the joint policy divergence more accurately. The Multi-Agent Mirror descent policy algorithm with Trust region decomposition, called MAMT, is established with the purpose to satisfy $delta$-stationarity. MAMT can adjust the trust region of the local policies adaptively in an end-to-end manner, thereby approximately constraining the divergence of joint policy to alleviate the non-stationary problem. Our method can bring noticeable and stable performance improvement compared with baselines in coordination tasks of different complexity.
Social learning is a key component of human and animal intelligence. By taking cues from the behavior of experts in their environment, social learners can acquire sophisticated behavior and rapidly adapt to new circumstances. This paper investigates whether independent reinforcement learning (RL) agents in a multi-agent environment can learn to use social learning to improve their performance. We find that in most circumstances, vanilla model-free RL agents do not use social learning. We analyze the reasons for this deficiency, and show that by imposing constraints on the training environment and introducing a model-based auxiliary loss we are able to obtain generalized social learning policies which enable agents to: i) discover complex skills that are not learned from single-agent training, and ii) adapt online to novel environments by taking cues from experts present in the new environment. In contrast, agents trained with model-free RL or imitation learning generalize poorly and do not succeed in the transfer tasks. By mixing multi-agent and solo training, we can obtain agents that use social learning to gain skills that they can deploy when alone, even out-performing agents trained alone from the start.
Solving tasks with sparse rewards is one of the most important challenges in reinforcement learning. In the single-agent setting, this challenge is addressed by introducing intrinsic rewards that motivate agents to explore unseen regions of their state spaces; however, applying these techniques naively to the multi-agent setting results in agents exploring independently, without any coordination among themselves. Exploration in cooperative multi-agent settings can be accelerated and improved if agents coordinate their exploration. In this paper we introduce a framework for designing intrinsic rewards which consider what other agents have explored such that the agents can coordinate. Then, we develop an approach for learning how to dynamically select between several exploration modalities to maximize extrinsic rewards. Concretely, we formulate the approach as a hierarchical policy where a high-level controller selects among sets of policies trained on diverse intrinsic rewards and the low-level controllers learn the action policies of all agents under these specific rewards. We demonstrate the effectiveness of the proposed approach in cooperative domains with sparse rewards where state-of-the-art methods fail and challenging multi-stage tasks that necessitate changing modes of coordination.
Recent advances in multi-agent reinforcement learning (MARL) have achieved super-human performance in games like Quake 3 and Dota 2. Unfortunately, these techniques require orders-of-magnitude more training rounds than humans and dont generalize to new agent configurations even on the same game. In this work, we propose Collaborative Q-learning (CollaQ) that achieves state-of-the-art performance in the StarCraft multi-agent challenge and supports ad hoc team play. We first formulate multi-agent collaboration as a joint optimization on reward assignment and show that each agent has an approximately optimal policy that decomposes into two parts: one part that only relies on the agents own state, and the other part that is related to states of nearby agents. Following this novel finding, CollaQ decomposes the Q-function of each agent into a self term and an interactive term, with a Multi-Agent Reward Attribution (MARA) loss that regularizes the training. CollaQ is evaluated on various StarCraft maps and shows that it outperforms existing state-of-the-art techniques (i.e., QMIX, QTRAN, and VDN) by improving the win rate by 40% with the same number of samples. In the more challenging ad hoc team play setting (i.e., reweight/add/remove units without re-training or finetuning), CollaQ outperforms previous SoTA by over 30%.
In multi-agent reinforcement learning, the inherent non-stationarity of the environment caused by other agents actions posed significant difficulties for an agent to learn a good policy independently. One way to deal with non-stationarity is agent modeling, by which the agent takes into consideration the influence of other agents policies. Most existing work relies on predicting other agents actions or goals, or discriminating between their policies. However, such modeling fails to capture the similarities and differences between policies simultaneously and thus cannot provide useful information when generalizing to unseen policies. To address this, we propose a general method to learn representations of other agents policies via the joint-action distributions sampled in interactions. The similarities and differences between policies are naturally captured by the policy distance inferred from the joint-action distributions and deliberately reflected in the learned representations. Agents conditioned on the policy representations can well generalize to unseen agents. We empirically demonstrate that our method outperforms existing work in multi-agent tasks when facing unseen agents.
In multi-agent reinforcement learning, the problem of learning to act is particularly difficult because the policies of co-players may be heavily conditioned on information only observed by them. On the other hand, humans readily form beliefs about the knowledge possessed by their peers and leverage beliefs to inform decision-making. Such abilities underlie individual success in a wide range of Markov games, from bluffing in Poker to conditional cooperation in the Prisoners Dilemma, to convention-building in Bridge. Classical methods are usually not applicable to complex domains due to the intractable nature of hierarchical beliefs (i.e. beliefs of other agents beliefs). We propose a scalable method to approximate these belief structures using recursive deep generative models, and to use the belief models to obtain representations useful to acting in complex tasks. Our agents trained with belief models outperform model-free baselines with equivalent representational capacity using common training paradigms. We also show that higher-order belief models outperform agents with lower-order models.