No Arabic abstract
In multi-agent reinforcement learning, the inherent non-stationarity of the environment caused by other agents actions posed significant difficulties for an agent to learn a good policy independently. One way to deal with non-stationarity is agent modeling, by which the agent takes into consideration the influence of other agents policies. Most existing work relies on predicting other agents actions or goals, or discriminating between their policies. However, such modeling fails to capture the similarities and differences between policies simultaneously and thus cannot provide useful information when generalizing to unseen policies. To address this, we propose a general method to learn representations of other agents policies via the joint-action distributions sampled in interactions. The similarities and differences between policies are naturally captured by the policy distance inferred from the joint-action distributions and deliberately reflected in the learned representations. Agents conditioned on the policy representations can well generalize to unseen agents. We empirically demonstrate that our method outperforms existing work in multi-agent tasks when facing unseen agents.
This paper proposes a definition of system health in the context of multiple agents optimizing a joint reward function. We use this definition as a credit assignment term in a policy gradient algorithm to distinguish the contributions of individual agents to the global reward. The health-informed credit assignment is then extended to a multi-agent variant of the proximal policy optimization algorithm and demonstrated on particle and multiwalker robot environments that have characteristics such as system health, risk-taking, semi-expendable agents, continuous action spaces, and partial observability. We show significant improvement in learning performance compared to policy gradient methods that do not perform multi-agent credit assignment.
Social learning is a key component of human and animal intelligence. By taking cues from the behavior of experts in their environment, social learners can acquire sophisticated behavior and rapidly adapt to new circumstances. This paper investigates whether independent reinforcement learning (RL) agents in a multi-agent environment can learn to use social learning to improve their performance. We find that in most circumstances, vanilla model-free RL agents do not use social learning. We analyze the reasons for this deficiency, and show that by imposing constraints on the training environment and introducing a model-based auxiliary loss we are able to obtain generalized social learning policies which enable agents to: i) discover complex skills that are not learned from single-agent training, and ii) adapt online to novel environments by taking cues from experts present in the new environment. In contrast, agents trained with model-free RL or imitation learning generalize poorly and do not succeed in the transfer tasks. By mixing multi-agent and solo training, we can obtain agents that use social learning to gain skills that they can deploy when alone, even out-performing agents trained alone from the start.
Reward decomposition is a critical problem in centralized training with decentralized execution~(CTDE) paradigm for multi-agent reinforcement learning. To take full advantage of global information, which exploits the states from all agents and the related environment for decomposing Q values into individual credits, we propose a general meta-learning-based Mixing Network with Meta Policy Gradient~(MNMPG) framework to distill the global hierarchy for delicate reward decomposition. The excitation signal for learning global hierarchy is deduced from the episode reward difference between before and after exercise updates through the utility network. Our method is generally applicable to the CTDE method using a monotonic mixing network. Experiments on the StarCraft II micromanagement benchmark demonstrate that our method just with a simple utility network is able to outperform the current state-of-the-art MARL algorithms on 4 of 5 super hard scenarios. Better performance can be further achieved when combined with a role-based utility network.
Solving tasks with sparse rewards is one of the most important challenges in reinforcement learning. In the single-agent setting, this challenge is addressed by introducing intrinsic rewards that motivate agents to explore unseen regions of their state spaces; however, applying these techniques naively to the multi-agent setting results in agents exploring independently, without any coordination among themselves. Exploration in cooperative multi-agent settings can be accelerated and improved if agents coordinate their exploration. In this paper we introduce a framework for designing intrinsic rewards which consider what other agents have explored such that the agents can coordinate. Then, we develop an approach for learning how to dynamically select between several exploration modalities to maximize extrinsic rewards. Concretely, we formulate the approach as a hierarchical policy where a high-level controller selects among sets of policies trained on diverse intrinsic rewards and the low-level controllers learn the action policies of all agents under these specific rewards. We demonstrate the effectiveness of the proposed approach in cooperative domains with sparse rewards where state-of-the-art methods fail and challenging multi-stage tasks that necessitate changing modes of coordination.
Object-centric representations have recently enabled significant progress in tackling relational reasoning tasks. By building a strong object-centric inductive bias into neural architectures, recent efforts have improved generalization and data efficiency of machine learning algorithms for these problems. One problem class involving relational reasoning that still remains under-explored is multi-agent reinforcement learning (MARL). Here we investigate whether object-centric representations are also beneficial in the fully cooperative MARL setting. Specifically, we study two ways of incorporating an agent-centric inductive bias into our RL algorithm: 1. Introducing an agent-centric attention module with explicit connections across agents 2. Adding an agent-centric unsupervised predictive objective (i.e. not using action labels), to be used as an auxiliary loss for MARL, or as the basis of a pre-training step. We evaluate these approaches on the Google Research Football environment as well as DeepMind Lab 2D. Empirically, agent-centric representation learning leads to the emergence of more complex cooperation strategies between agents as well as enhanced sample efficiency and generalization.