No Arabic abstract
Many physical, biological and neural systems behave as coupled oscillators, with characteristic phase coupling across different frequencies. Methods such as $n:m$ phase locking value and bi-phase locking value have previously been proposed to quantify phase coupling between two resonant frequencies (e.g. $f$, $2f/3$) and across three frequencies (e.g. $f_1$, $f_2$, $f_1+f_2$), respectively. However, the existing phase coupling metrics have their limitations and limited applications. They cannot be used to detect or quantify phase coupling across multiple frequencies (e.g. $f_1$, $f_2$, $f_3$, $f_4$, $f_1+f_2+f_3-f_4$), or coupling that involves non-integer multiples of the frequencies (e.g. $f_1$, $f_2$, $2f_1/3+f_2/3$). To address the gap, this paper proposes a generalized approach, named multi-phase locking value (M-PLV), for the quantification of various types of instantaneous multi-frequency phase coupling. Different from most instantaneous phase coupling metrics that measure the simultaneous phase coupling, the proposed M-PLV method also allows the detection of delayed phase coupling and the associated time lag between coupled oscillators. The M-PLV has been tested on cases where synthetic coupled signals are generated using white Gaussian signals, and a system comprised of multiple coupled Rossler oscillators. Results indicate that the M-PLV can provide a reliable estimation of the time window and frequency combination where the phase coupling is significant, as well as a precise determination of time lag in the case of delayed coupling. This method has the potential to become a powerful new tool for exploring phase coupling in complex nonlinear dynamic systems.
Stimulated Brillouin scattering (SBS) and Kerr-nonlinear four wave-mixing (FWM) are among the most important and widely studied nonlinear effects in optical fibres. At high powers SBS can be cascaded producing multiple Stokes waves spaced by the Brillouin frequency shift. Here, we investigate the complex nonlinear interaction of the cascade of Stokes waves, generated in a Fabry-Perot chalcogenide fibre resonator through the combined action of SBS and FWM. We demonstrate the existence of parameter regimes, in which pump and Stokes waves attain a phase-locked steady state. Real-time measurements of 40ps pulses with 8GHz repetition rate are presented, confirming short-and long-term stability. Numerical simulations qualitatively agree with experiments and show the significance of FWM in phase-locking of pump and Stokes waves. Our findings can be applied for the design of novel picosecond pulse sources with GHz repetition rate for optical communication systems.
We propose a novel formulation for phase synchronization -- the statistical problem of jointly estimating alignment angles from noisy pairwise comparisons -- as a nonconvex optimization problem that enforces consistency among the pairwise comparisons in multiple frequency channels. Inspired by harmonic retrieval in signal processing, we develop a simple yet efficient two-stage algorithm that leverages the multi-frequency information. We demonstrate in theory and practice that the proposed algorithm significantly outperforms state-of-the-art phase synchronization algorithms, at a mild computational costs incurred by using the extra frequency channels. We also extend our algorithmic framework to general synchronization problems over compact Lie groups.
A unique approach for steady in-phase locking of lasers in an array, regardless of the array geometry, position, orientation, period or size, is presented. The approach relies on the insertion of an intra-cavity Gaussian aperture in the far-field plane of the laser array. Steady in-phase locking of $90$ lasers, whose far-field patterns are comprised of sharp spots with extremely high power density, was obtained for various array geometries, even in the presence of near-degenerate solutions, geometric frustration or superimposed independent longitudinal modes. The internal phase structures of the lasers can also be suppressed so as to obtain pure Gaussian mode laser outputs with uniform phase and overall high beam quality. The approach could potentially improve the performances of recently developed laser simulators that are used for solving various computational problems.
Safety and automatic control are extremely important when operating manipulators. For large engineering manipulators, the main challenge is to accurately recognize the posture of all arm segments. In classical sensing methods, the accuracy of an inclinometer is easily affected by the elastic deformation in the manipulators arms. This results in big error accumulations when sensing the angle of joints between arms one by one. In addition, the sensing method based on machine vision is not suitable for such kind of outdoor working situation yet. In this paper, we propose a novel posture positioning method for multi-joint manipulators based on wireless sensor network localization. The posture sensing problem is formulated as a Nearest-Euclidean-Distance-Matrix (NEDM) model. The resulting approach is referred to as EDM-based posture positioning approach (EPP) and it satisfies the following guiding principles: (i) The posture of each arm segment on a multi-joint manipulator must be estimated as accurately as possible; (ii) The approach must be computationally fast; (iii) The designed approach should not be susceptible to obstructions. To further improve accuracy, we explore the inherent structure of manipulators, i.e., fixed-arm length. This is naturally presented as linear constraints in the NEDM model. For concrete pumps, a typical multi-joint manipulator, the mechanical property that all arm segments always lie in a 2D plane is used for dimension-reduction operation. Simulation and experimental results show that the proposed method provides efficient solutions for posture sensing problem and can obtain preferable localization performance with faster speed than applying the existing localization methods.
Particulate flows have been largely studied under the simplifying assumptions of one-way coupling regime where the disperse phase do not react-back on the carrier fluid. In the context of turbulent flows, many non trivial phenomena such as small scales particles clustering or preferential spatial accumulation have been explained and understood. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e. by accounting for the inter-phase momentum exchange between the carrier and the suspended phase, certainly relevant at increasing mass loading. In such regime, partially investigated in the past by the so-called Particle In Cell (PIC) method, much is still to be learned about the dynamics of the disperse phase and the ensuing alteration of the carrier flow. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. In fact, the momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped, point masses which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between particles and fluid which avoids any ah hoc assumption. The approach is suited for high efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space around the actual particle position. As will be shown, hundred thousands particles can therefore be handled at an affordable computational cost as demonstrated by a preliminary application to a particle laden turbulent shear flow.