Do you want to publish a course? Click here

Exact regularized point particle method for multi-phase flows in the two-way coupling regime

116   0   0.0 ( 0 )
 Added by Paolo Gualtieri
 Publication date 2014
  fields Physics
and research's language is English




Ask ChatGPT about the research

Particulate flows have been largely studied under the simplifying assumptions of one-way coupling regime where the disperse phase do not react-back on the carrier fluid. In the context of turbulent flows, many non trivial phenomena such as small scales particles clustering or preferential spatial accumulation have been explained and understood. A more complete view of multiphase flows can be gained calling into play two-way coupling effects, i.e. by accounting for the inter-phase momentum exchange between the carrier and the suspended phase, certainly relevant at increasing mass loading. In such regime, partially investigated in the past by the so-called Particle In Cell (PIC) method, much is still to be learned about the dynamics of the disperse phase and the ensuing alteration of the carrier flow. In this paper we present a new methodology rigorously designed to capture the inter-phase momentum exchange for particles smaller than the smallest hydrodynamical scale, e.g. the Kolmogorov scale in a turbulent flow. In fact, the momentum coupling mechanism exploits the unsteady Stokes flow around a small rigid sphere where the transient disturbance produced by each particle is evaluated in a closed form. The particles are described as lumped, point masses which would lead to the appearance of singularities. A rigorous regularization procedure is conceived to extract the physically relevant interactions between particles and fluid which avoids any ah hoc assumption. The approach is suited for high efficiency implementation on massively parallel machines since the transient disturbance produced by the particles is strongly localized in space around the actual particle position. As will be shown, hundred thousands particles can therefore be handled at an affordable computational cost as demonstrated by a preliminary application to a particle laden turbulent shear flow.



rate research

Read More

We present a collection of eight data sets, from state-of-the-art experiments and numerical simulations on turbulent velocity statistics along particle trajectories obtained in different flows with Reynolds numbers in the range $R_lambda in [120:740]$. Lagrangian structure functions from all data sets are found to collapse onto each other on a wide range of time lags, revealing a universal statistics, and calling for a unified theoretical description. Parisi-Frisch Multifractal theory, suitable extended to the dissipative scales and to the Lagrangian domain, is found to capture intermittency of velocity statistics over the whole three decades of temporal scales here investigated.
Particle-in-Cell (PIC) methods are widely used computational tools for fluid and kinetic plasma modeling. While both the fluid and kinetic PIC approaches have been successfully used to target either kinetic or fluid simulations, little was done to combine fluid and kinetic particles under the same PIC framework. This work addresses this issue by proposing a new PIC method, PolyPIC, that uses polymorphic computational particles. In this numerical scheme, particles can be either kinetic or fluid, and fluid particles can become kinetic when necessary, e.g. particles undergoing a strong acceleration. We design and implement the PolyPIC method, and test it against the Landau damping of Langmuir and ion acoustic waves, two stream instability and sheath formation. We unify the fluid and kinetic PIC methods under one common framework comprising both fluid and kinetic particles, providing a tool for adaptive fluid-kinetic coupling in plasma simulations.
We propose a multi-resolution strategy that is compatible with the lattice Greens function (LGF) technique for solving viscous, incompressible flows on unbounded domains. The LGF method exploits the regularity of a finite-volume scheme on a formally unbounded Cartesian mesh to yield robust and computationally efficient solutions. The original method is spatially adaptive, but challenging to integrate with embedded mesh refinement as the underlying LGF is only defined for a fixed resolution. We present an ansatz for adaptive mesh refinement, where the solutions to the pressure Poisson equation are approximated using the LGF technique on a composite mesh constructed from a series of infinite lattices of differing resolution. To solve the incompressible Navier-Stokes equations, this is further combined with an integrating factor for the viscous terms and an appropriate Runge-Kutta scheme for the resulting differential-algebraic equations. The parallelized algorithm is verified through with numerical simulations of vortex rings, and the collision of vortex rings at high Reynolds number is simulated to demonstrate the reduction in computational cells achievable with both spatial and refinement adaptivity.
92 - E-W. Saw , P. Debue , D. Kuzzay 2017
All previous experiments in open turbulent flows (e.g. downstream of grids, jet and atmospheric boundary layer) have produced quantitatively consistent values for the scaling exponents of velocity structure functions. The only measurement in closed turbulent flow (von Karman swirling flow) using Taylor-hypothesis, however, produced scaling exponents that are significantly smaller, suggesting that the universality of these exponents are broken with respect to change of large scale geometry of the flow. Here, we report measurements of longitudinal structure functions of velocity in a von Karman setup without the use of Taylor-hypothesis. The measurements are made using Stereo Particle Image Velocimetry at 4 different ranges of spatial scales, in order to observe a combined inertial subrange spanning roughly one and a half order of magnitude. We found scaling exponents (up to 9th order) that are consistent with values from open turbulent flows, suggesting that they might be in fact universal.
By revisiting the century-old problem of water bridge, we demonstrate that it is in fact dynamic and comprises of two coaxial water currents that carry different charges and flow in opposite directions. This spontaneous separation is triggered by the different stages to construct the water bridge. Initially, a flow is facilitated by the cone jet that is powered by H+ and flows out of the positive-electrode beaker. An opposing cone-jet from negative beaker is established later and forced to take the outer route. This spontaneous arrangement of two-way flow is revealed by using fluorescein and carbon powder as tracers, and the Particle Image Velocimetry, These two opposing flows are found to carry non-equal flux that results in a net transport of water to the negative beaker. We manage to estimate the flow speed and cross-sectional area of these co-axial flows as a function of time and applied voltage. Note that the water on the outer layer functions as a millimeter tube that confines and interacts strongly with the flow inside. This provides a first natural and yet counter example to the recently reported near-frictionless flow in an equally miniatureized soft wall made from ferrofluid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا