Do you want to publish a course? Click here

Adaptive dose-response studies to establish proof-of-concept in learning-phase clinical trials

63   0   0.0 ( 0 )
 Added by Shiyang Ma
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In learning-phase clinical trials in drug development, adaptive designs can be efficient and highly informative when used appropriately. In this article, we extend the multiple comparison procedures with modeling techniques (MCP-Mod) procedure with generalized multiple contrast tests (GMCTs) to two-stage adaptive designs for establishing proof-of-concept. The results of an interim analysis of first-stage data are used to adapt the candidate dose-response models and the dosages studied in the second stage. GMCTs are used in both stages to obtain stage-wise p-values, which are then combined to determine an overall p-value. An alternative approach is also considered that combines the t-statistics across stages, employing the conditional rejection probability (CRP) principle to preserve the Type I error probability. Simulation studies demonstrate that the adaptive designs are advantageous compared to the corresponding tests in a non-adaptive design if the selection of the candidate set of dose-response models is not well informed by evidence from preclinical and early-phase studies.



rate research

Read More

Response-adaptive randomization (RAR) is part of a wider class of data-dependent sampling algorithms, for which clinical trials are used as a motivating application. In that context, patient allocation to treatments is determined by randomization probabilities that are altered based on the accrued response data in order to achieve experimental goals. RAR has received abundant theoretical attention from the biostatistical literature since the 1930s and has been the subject of numerous debates. In the last decade, it has received renewed consideration from the applied and methodological communities, driven by successful practical examples and its widespread use in machine learning. Papers on the subject can give different views on its usefulness, and reconciling these may be difficult. This work aims to address this gap by providing a unified, broad and up-to-date review of methodological and practical issues to consider when debating the use of RAR in clinical trials.
Phase I dose-finding trials are increasingly challenging as the relationship between efficacy and toxicity of new compounds (or combination of them) becomes more complex. Despite this, most commonly used methods in practice focus on identifying a Maximum Tolerated Dose (MTD) by learning only from toxicity events. We present a novel adaptive clinical trial methodology, called Safe Efficacy Exploration Dose Allocation (SEEDA), that aims at maximizing the cumulative efficacies while satisfying the toxicity safety constraint with high probability. We evaluate performance objectives that have operational meanings in practical clinical trials, including cumulative efficacy, recommendation/allocation success probabilities, toxicity violation probability, and sample efficiency. An extended SEEDA-Plateau algorithm that is tailored for the increase-then-plateau efficacy behavior of molecularly targeted agents (MTA) is also presented. Through numerical experiments using both synthetic and real-world datasets, we show that SEEDA outperforms state-of-the-art clinical trial designs by finding the optimal dose with higher success rate and fewer patients.
212 - Suyu Liu , Ying Yuan 2013
Interval designs are a class of phase I trial designs for which the decision of dose assignment is determined by comparing the observed toxicity rate at the current dose with a prespecified (toxicity tolerance) interval. If the observed toxicity rate is located within the interval, we retain the current dose; if the observed toxicity rate is greater than the upper boundary of the interval, we deescalate the dose; and if the observed toxicity rate is smaller than the lower boundary of the interval, we escalate the dose. The most critical issue for the interval design is choosing an appropriate interval so that the design has good operating characteristics. By casting dose finding as a Bayesian decision-making problem, we propose new flexible methods to select the interval boundaries so as to minimize the probability of inappropriate dose assignment for patients. We show, both theoretically and numerically, that the resulting optimal interval designs not only have desirable finite- and large-sample properties, but also are particularly easy to implement in practice. Compared to existing designs, the proposed (local) optimal design has comparable average performance, but a lower risk of yielding a poorly performing clinical trial.
We propose BaySize, a sample size calculator for phase I clinical trials using Bayesian models. BaySize applies the concept of effect size in dose finding, assuming the MTD is defined based on an equivalence interval. Leveraging a decision framework that involves composite hypotheses, BaySize utilizes two prior distributions, the fitting prior (for model fitting) and sampling prior (for data generation), to conduct sample size calculation under desirable statistical power. Look-up tables are generated to facilitate practical applications. To our knowledge, BaySize is the first sample size tool that can be applied to a broad range of phase I trial designs.
115 - Changyu Shen , Xiaochun Li 2019
Phase III randomized clinical trials play a monumentally critical role in the evaluation of new medical products. Because of the intrinsic nature of uncertainty embedded in our capability in assessing the efficacy of a medical product, interpretation of trial results relies on statistical principles to control the error of false positives below desirable level. The well-established statistical hypothesis testing procedure suffers from two major limitations, namely, the lack of flexibility in the thresholds to claim success and the lack of capability of controlling the total number of false positives that could be yielded by the large volume of trials. We propose two general theoretical frameworks based on the conventional frequentist paradigm and Bayesian perspectives, which offer realistic, flexible and effective solutions to these limitations. Our methods are based on the distribution of the effect sizes of the population of trials of interest. The estimation of this distribution is practically feasible as clinicaltrials.gov provides a centralized data repository with unbiased coverage of clinical trials. We provide a detailed development of the two frameworks with numerical results obtained for industry sponsored Phase III randomized clinical trials.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا