Do you want to publish a course? Click here

Response-adaptive randomization in clinical trials: from myths to practical considerations

424   0   0.0 ( 0 )
 Added by David Robertson
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Response-adaptive randomization (RAR) is part of a wider class of data-dependent sampling algorithms, for which clinical trials are used as a motivating application. In that context, patient allocation to treatments is determined by randomization probabilities that are altered based on the accrued response data in order to achieve experimental goals. RAR has received abundant theoretical attention from the biostatistical literature since the 1930s and has been the subject of numerous debates. In the last decade, it has received renewed consideration from the applied and methodological communities, driven by successful practical examples and its widespread use in machine learning. Papers on the subject can give different views on its usefulness, and reconciling these may be difficult. This work aims to address this gap by providing a unified, broad and up-to-date review of methodological and practical issues to consider when debating the use of RAR in clinical trials.



rate research

Read More

In learning-phase clinical trials in drug development, adaptive designs can be efficient and highly informative when used appropriately. In this article, we extend the multiple comparison procedures with modeling techniques (MCP-Mod) procedure with generalized multiple contrast tests (GMCTs) to two-stage adaptive designs for establishing proof-of-concept. The results of an interim analysis of first-stage data are used to adapt the candidate dose-response models and the dosages studied in the second stage. GMCTs are used in both stages to obtain stage-wise p-values, which are then combined to determine an overall p-value. An alternative approach is also considered that combines the t-statistics across stages, employing the conditional rejection probability (CRP) principle to preserve the Type I error probability. Simulation studies demonstrate that the adaptive designs are advantageous compared to the corresponding tests in a non-adaptive design if the selection of the candidate set of dose-response models is not well informed by evidence from preclinical and early-phase studies.
Response adaptive randomization is appealing in confirmatory adaptive clinical trials from statistical, ethical, and pragmatic perspectives, in the sense that subjects are more likely to be randomized to better performing treatment groups based on accumulating data. The Doubly Adaptive Biased Coin Design (DBCD) is a popular solution due to its asymptotic normal property of final allocations, which further justifies its asymptotic type I error rate control. As an alternative, we propose a Response Adaptive Block Randomization (RABR) design with pre-specified randomization ratios for the control and high-performing groups to robustly achieve desired final sample size per group under different underlying responses, which is usually required in industry-sponsored clinical studies. We show that the usual test statistic has a controlled type I error rate. Our simulations further highlight the advantages of the proposed design over the DBCD in terms of consistently achieving final sample allocations and of power performance. We further apply this design to a Phase III study evaluating the efficacy of two dosing regimens of adjunctive everolimus in treating tuberous sclerosis complex but with no previous dose-finding studies in this indication.
Phase I dose-finding trials are increasingly challenging as the relationship between efficacy and toxicity of new compounds (or combination of them) becomes more complex. Despite this, most commonly used methods in practice focus on identifying a Maximum Tolerated Dose (MTD) by learning only from toxicity events. We present a novel adaptive clinical trial methodology, called Safe Efficacy Exploration Dose Allocation (SEEDA), that aims at maximizing the cumulative efficacies while satisfying the toxicity safety constraint with high probability. We evaluate performance objectives that have operational meanings in practical clinical trials, including cumulative efficacy, recommendation/allocation success probabilities, toxicity violation probability, and sample efficiency. An extended SEEDA-Plateau algorithm that is tailored for the increase-then-plateau efficacy behavior of molecularly targeted agents (MTA) is also presented. Through numerical experiments using both synthetic and real-world datasets, we show that SEEDA outperforms state-of-the-art clinical trial designs by finding the optimal dose with higher success rate and fewer patients.
82 - Liyun Jiang , Lei Nie , Ying Yuan 2020
Use of historical data and real-world evidence holds great potential to improve the efficiency of clinical trials. One major challenge is how to effectively borrow information from historical data while maintaining a reasonable type I error. We propose the elastic prior approach to address this challenge and achieve dynamic information borrowing. Unlike existing approaches, this method proactively controls the behavior of dynamic information borrowing and type I errors by incorporating a well-known concept of clinically meaningful difference through an elastic function, defined as a monotonic function of a congruence measure between historical data and trial data. The elastic function is constructed to satisfy a set of information-borrowing constraints prespecified by researchers or regulatory agencies, such that the prior will borrow information when historical and trial data are congruent, but refrain from information borrowing when historical and trial data are incongruent. In doing so, the elastic prior improves power and reduces the risk of data dredging and bias. The elastic prior is information borrowing consistent, i.e. asymptotically controls type I and II errors at the nominal values when historical data and trial data are not congruent, a unique characteristics of the elastic prior approach. Our simulation study that evaluates the finite sample characteristic confirms that, compared to existing methods, the elastic prior has better type I error control and yields competitive or higher power.
81 - Tianjian Zhou , Yuan Ji 2021
Most clinical trials involve the comparison of a new treatment to a control arm (e.g., the standard of care) and the estimation of a treatment effect. External data, including historical clinical trial data and real-world observational data, are commonly available for the control arm. Borrowing information from external data holds the promise of improving the estimation of relevant parameters and increasing the power of detecting a treatment effect if it exists. In this paper, we propose to use Bayesian additive regression trees (BART) for incorporating external data into the analysis of clinical trials, with a specific goal of estimating the conditional or population average treatment effect. BART naturally adjusts for patient-level covariates and captures potentially heterogeneous treatment effects across different data sources, achieving flexible borrowing. Simulation studies demonstrate that BART compares favorably to a hierarchical linear model and a normal-normal hierarchical model. We illustrate the proposed method with an acupuncture trial.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا