Do you want to publish a course? Click here

BaySize: Bayesian Sample Size Planning for Phase I Dose-Finding Trials

211   0   0.0 ( 0 )
 Added by Yuan Shijie
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose BaySize, a sample size calculator for phase I clinical trials using Bayesian models. BaySize applies the concept of effect size in dose finding, assuming the MTD is defined based on an equivalence interval. Leveraging a decision framework that involves composite hypotheses, BaySize utilizes two prior distributions, the fitting prior (for model fitting) and sampling prior (for data generation), to conduct sample size calculation under desirable statistical power. Look-up tables are generated to facilitate practical applications. To our knowledge, BaySize is the first sample size tool that can be applied to a broad range of phase I trial designs.

rate research

Read More

We propose an information borrowing strategy for the design and monitoring of phase II basket trials based on the local multisource exchangeability assumption between baskets (disease types). We construct a flexible statistical design using the proposed strategy. Our approach partitions potentially heterogeneous baskets into non-exchangeable blocks. Information borrowing is only allowed to occur locally, i.e., among similar baskets within the same block. The amount of borrowing is determined by between-basket similarities. The number of blocks and block memberships are inferred from data based on the posterior probability of each partition. The proposed method is compared to the multisource exchangeability model and Simons two-stage design, respectively. In a variety of simulation scenarios, we demonstrate the proposed method is able to maintain the type I error rate and have desirable basket-wise power. In addition, our method is computationally efficient compared to existing Bayesian methods in that the posterior profiles of interest can be derived explicitly without the need for sampling algorithms.
The development of a new diagnostic test ideally follows a sequence of stages which, amongst other aims, evaluate technical performance. This includes an analytical validity study, a diagnostic accuracy study and an interventional clinical utility study. Current approaches to the design and analysis of the diagnostic accuracy study can suffer from prohibitively large sample sizes and interval estimates with undesirable properties. In this paper, we propose a novel Bayesian approach which takes advantage of information available from the analytical validity stage. We utilise assurance to calculate the required sample size based on the target width of a posterior probability interval and can choose to use or disregard the data from the analytical validity study when subsequently inferring measures of test accuracy. Sensitivity analyses are performed to assess the robustness of the proposed sample size to the choice of prior, and prior-data conflict is evaluated by comparing the data to the prior predictive distributions. We illustrate the proposed approach using a motivating real-life application involving a diagnostic test for ventilator associated pneumonia. Finally, we compare the properties of the proposed approach against commonly used alternatives. The results show that by making better use of existing data from earlier studies, the assurance-based approach can not only reduce the required sample size when compared to alternatives, but can also produce more reliable sample sizes for diagnostic accuracy studies.
Incorporating preclinical animal data, which can be regarded as a special kind of historical data, into phase I clinical trials can improve decision making when very little about human toxicity is known. In this paper, we develop a robust hierarchical modelling approach to leverage animal data into new phase I clinical trials, where we bridge across non-overlapping, potentially heterogeneous patient subgroups. Translation parameters are used to bring both historical and contemporary data onto a common dosing scale. This leads to feasible exchangeability assumptions that the parameter vectors, which underpin the dose-toxicity relationship per study, are assumed to be drawn from a common distribution. Moreover, human dose-toxicity parameter vectors are assumed to be exchangeable either with the standardised, animal study-specific parameter vectors, or between themselves. Possibility of non-exchangeability for each parameter vector is considered to avoid inferences for extreme subgroups being overly influenced by the other. We illustrate the proposed approach with several trial data examples, and evaluate the operating characteristics of our model compared with several alternatives in a simulation study. Numerical results show that our approach yields robust inferences in circumstances, where data from multiple sources are inconsistent and/or the bridging assumptions are incorrect.
179 - Suyu Liu , Ying Yuan 2013
Interval designs are a class of phase I trial designs for which the decision of dose assignment is determined by comparing the observed toxicity rate at the current dose with a prespecified (toxicity tolerance) interval. If the observed toxicity rate is located within the interval, we retain the current dose; if the observed toxicity rate is greater than the upper boundary of the interval, we deescalate the dose; and if the observed toxicity rate is smaller than the lower boundary of the interval, we escalate the dose. The most critical issue for the interval design is choosing an appropriate interval so that the design has good operating characteristics. By casting dose finding as a Bayesian decision-making problem, we propose new flexible methods to select the interval boundaries so as to minimize the probability of inappropriate dose assignment for patients. We show, both theoretically and numerically, that the resulting optimal interval designs not only have desirable finite- and large-sample properties, but also are particularly easy to implement in practice. Compared to existing designs, the proposed (local) optimal design has comparable average performance, but a lower risk of yielding a poorly performing clinical trial.
This paper develops Bayesian sample size formulae for experiments comparing two groups. We assume the experimental data will be analysed in the Bayesian framework, where pre-experimental information from multiple sources can be represented into robust priors. In particular, such robust priors account for preliminary belief about the pairwise commensurability between parameters that underpin the historical and new experiments, to permit flexible borrowing of information. Averaged over the probability space of the new experimental data, appropriate sample sizes are found according to criteria that control certain aspects of the posterior distribution, such as the coverage probability or length of a defined density region. Our Bayesian methodology can be applied to circumstances where the common variance in the new experiment is known or unknown. Exact solutions are available based on most of the criteria considered for Bayesian sample size determination, while a search procedure is described in cases for which there are no closed-form expressions. We illustrate the application of our Bayesian sample size formulae in the setting of designing a clinical trial. Hypothetical data examples, motivated by a rare-disease trial with elicitation of expert prior opinion, and a comprehensive performance evaluation of the proposed methodology are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا