No Arabic abstract
Rule-based dialogue management is still the most popular solution for industrial task-oriented dialogue systems for their interpretablility. However, it is hard for developers to maintain the dialogue logic when the scenarios get more and more complex. On the other hand, data-driven dialogue systems, usually with end-to-end structures, are popular in academic research and easier to deal with complex conversations, but such methods require plenty of training data and the behaviors are less interpretable. In this paper, we propose a method to leverages the strength of both rule-based and data-driven dialogue managers (DM). We firstly introduce the DM of Carina Dialog System (CDS, an advanced industrial dialogue system built by Microsoft). Then we propose the model-trigger design to make the DM trainable thus scalable to scenario changes. Furthermore, we integrate pre-trained models and empower the DM with few-shot capability. The experimental results demonstrate the effectiveness and strong few-shot capability of our method.
Complex node interactions are common in knowledge graphs, and these interactions also contain rich knowledge information. However, traditional methods usually treat a triple as a training unit during the knowledge representation learning (KRL) procedure, neglecting contextualized information of the nodes in knowledge graphs (KGs). We generalize the modeling object to a very general form, which theoretically supports any subgraph extracted from the knowledge graph, and these subgraphs are fed into a novel transformer-based model to learn the knowledge embeddings. To broaden usage scenarios of knowledge, pre-trained language models are utilized to build a model that incorporates the learned knowledge representations. Experimental results demonstrate that our model achieves the state-of-the-art performance on several medical NLP tasks, and improvement above TransE indicates that our KRL method captures the graph contextualized information effectively.
Dialogue is an essential part of human communication and cooperation. Existing research mainly focuses on short dialogue scenarios in a one-on-one fashion. However, multi-person interactions in the real world, such as meetings or interviews, are frequently over a few thousand words. There is still a lack of corresponding research and powerful tools to understand and process such long dialogues. Therefore, in this work, we present a pre-training framework for long dialogue understanding and summarization. Considering the nature of long conversations, we propose a window-based denoising approach for generative pre-training. For a dialogue, it corrupts a window of text with dialogue-inspired noise, and guides the model to reconstruct this window based on the content of the remaining conversation. Furthermore, to process longer input, we augment the model with sparse attention which is combined with conventional attention in a hybrid manner. We conduct extensive experiments on five datasets of long dialogues, covering tasks of dialogue summarization, abstractive question answering and topic segmentation. Experimentally, we show that our pre-trained model DialogLM significantly surpasses the state-of-the-art models across datasets and tasks.
One challenge for dialogue agents is to recognize feelings of the conversation partner and respond accordingly. In this work, RoBERTa-GPT2 is proposed for empathetic dialogue generation, where the pre-trained auto-encoding RoBERTa is utilised as encoder and the pre-trained auto-regressive GPT-2 as decoder. With the combination of the pre-trained RoBERTa and GPT-2, our model realizes a new state-of-the-art emotion accuracy. To enable the empathetic ability of RoBERTa-GPT2 model, we propose a commonsense knowledge and emotional concepts extractor, in which the commonsensible and emotional concepts of dialogue context are extracted for the GPT-2 decoder. The experiment results demonstrate that the empathetic dialogue generation benefits from both pre-trained encoder-decoder architecture and external knowledge.
Encoder pre-training is promising in end-to-end Speech Translation (ST), given the fact that speech-to-translation data is scarce. But ST encoders are not simple instances of Automatic Speech Recognition (ASR) or Machine Translation (MT) encoders. For example, we find that ASR encoders lack the global context representation, which is necessary for translation, whereas MT encoders are not designed to deal with long but locally attentive acoustic sequences. In this work, we propose a Stacked Acoustic-and-Textual Encoding (SATE) method for speech translation. Our encoder begins with processing the acoustic sequence as usual, but later behaves more like an MT encoder for a global representation of the input sequence. In this way, it is straightforward to incorporate the pre-trained models into the system. Also, we develop an adaptor module to alleviate the representation inconsistency between the pre-trained ASR encoder and MT encoder, and develop a multi-teacher knowledge distillation method to preserve the pre-training knowledge. Experimental results on the LibriSpeech En-Fr and MuST-C En-De ST tasks show that our method achieves state-of-the-art BLEU scores of 18.3 and 25.2. To our knowledge, we are the first to develop an end-to-end ST system that achieves comparable or even better BLEU performance than the cascaded ST counterpart when large-scale ASR and MT data is available.
Endowing dialogue systems with personas is essential to deliver more human-like conversations. However, this problem is still far from well explored due to the difficulties of both embodying personalities in natural languages and the persona sparsity issue observed in most dialogue corpora. This paper proposes a pre-training based personalized dialogue model that can generate coherent responses using persona-sparse dialogue data. In this method, a pre-trained language model is used to initialize an encoder and decoder, and personal attribute embeddings are devised to model richer dialogue contexts by encoding speakers personas together with dialogue histories. Further, to incorporate the target persona in the decoding process and to balance its contribution, an attention routing structure is devised in the decoder to merge features extracted from the target persona and dialogue contexts using dynamically predicted weights. Our model can utilize persona-sparse dialogues in a unified manner during the training process, and can also control the amount of persona-related features to exhibit during the inference process. Both automatic and manual evaluation demonstrates that the proposed model outperforms state-of-the-art methods for generating more coherent and persona consistent responses with persona-sparse data.