Do you want to publish a course? Click here

Structural and magnetic properties of the new quantum magnet BaCuTe$_2$O$_6$

75   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate the structural and magnetic properties of the new quantum magnet BaCuTe$_2$O$_6$. This compound is synthesized for the first time in powder and single crystal form. Synchrotron X-ray and neutron diffraction reveal a cubic crystal structure (P4$_1$32) where the magnetic Cu$^{2+}$ ions form a complex network. Physical properties measurements suggest the presence of antiferromagnetic interactions with a Curie-Weiss temperature of -33K, while long-range magnetic order occurs at the much lower temperature of ~6.3K. The magnetic structure, solved using neutron diffraction, reveals antiferromagnetic order along chains parallel to the a, b and c crystal axes. This is consistent with the magnetic excitations which resemble the multispinon continuum typical of the spin-1/2 Heisenberg antiferromagnetic chain. A consistent intrachain interaction value of ~34K is achieved from the various techniques. Finally the magnetic structure provides evidence that the chains are coupled together in a non-colinear arrangement by a much weaker antiferromagnetic, frustrated hyperkagome interaction.



rate research

Read More

SrCuTe$_2$O$_6$ consists of a 3-dimensional arrangement of spin-$frac{1}{2}$ Cu$^{2+}$ ions. The 1st, 2nd and 3rd neighbor interactions respectively couple Cu$^{2+}$ moments into a network of isolated triangles, a highly frustrated hyperkagome lattice consisting of corner sharing triangles and antiferromagnetic chains. Of these, the chain interaction dominates in SrCuTe$_2$O$_6$ while the other two interactions lead to frustrated inter-chain coupling giving rise to long range magnetic order at suppressed temperatures. In this paper, we investigate the magnetic properties in SrCuTe$_2$O$_6$ using muon relaxation spectroscopy and neutron diffraction and present the low temperature magnetic structure.
The search for flat-band solid-state realizations is a crucial issue to verify or to challenge theoretical predictions for quantum many-body flat-band systems. For frustrated quantum magnets flat bands lead to various unconventional properties related to the existence of localized many-magnon states. The recently synthesized magnetic compound Ba$_2$CoSi$_2$O$_6$Cl$_2$ seems to be an almost perfect candidate to observe these features in experiments. We develop a theory for Ba$_2$CoSi$_2$O$_6$Cl$_2$ by adapting the localized-magnon concept to this compound. We first show that our theory describes the known experimental facts and then we propose new experimental studies to detect a field-driven phase transition related to a Wigner-crystal-like ordering of localized magnons at low temperatures.
Magnetization measurements on single-crystal cubic SrCuTe$_2$O$_6$ with an applied magnetic field of along three inequivalent high symmetry directions $[100]$, $[110]$, and $[111]$ reveal weak magnetic anisotropy. The fits of the magnetic susceptibility to the result from a quantum Monte Carlo simulation on the Heisenberg spin-chain model, where the chain is formed via the dominant third-nearest-neighbor exchange interaction $J_3$, yield the intra-chain interaction $(J_3/k_B)$ between 50.12(7) K for the applied field along $[110]$ and 52.5(2) K along $[100]$ with about the same $g$-factor of 2.2. Single-crystal neutron diffraction unveils the transition to the magnetic ordered state as evidenced by the onset of the magnetic Bragg intensity at $T_textrm{N1}=5.25(9)$ K with no anomaly of the second transition at $T_textrm{N2}$ reported previously. Based on irreducible representation theory and magnetic space group analysis of powder and single-crystal neutron diffraction data, the magnetic structure in the Shubnikov space group $P4_132$, where the Cu$^{2+}$~$S=1/2$ spins antiferromagnetically align in the direction perpendicular to the spin chain, is proposed. The measured ordered moment of $0.52(6)~mu_B$, which represents 48% reduction from the expected value of $1~mu_B$, suggests the remaining influence of frustration resulting from the $J_1$ and $J_2$ bonds.
We synthesized single crystals of composition Ba$_2$CuSi$_2$O$_6$Cl$_2$ and investigated its quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi$_2$O$_6$ also known as Han purple. Ba$_2$CuSi$_2$O$_6$Cl$_2$ has a singlet ground state with an excitation gap of ${Delta}/k_{rm B},{=},20.8$ K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the $g$-factor except for a small jump anomaly for a magnetic field perpendicular to the $c$ axis. The magnetization curve with a nonlinear slope above the critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. The magnetic-field-induced spin ordering in Ba$_2$CuSi$_2$O$_6$Cl$_2$ is described as the quasi-2D Bose-Einstein condensation of triplets.
The topological property of SrRu$_2$O$_6$ and isostructural CaOs$_2$O$_6$ under various strain conditions is investigated using density functional theory. Based on an analysis of parity eigenvalues, we anticipate that a three-dimensional strong topological insulating state should be realized when band inversion is induced at the A point in the hexagonal Brillouin zone. For SrRu$_2$O$_6$, such a transition requires rather unrealistic tuning, where only the $c$ axis is reduced while other structural parameters are unchanged. However, given the larger spin-orbit coupling and smaller lattice constants in CaOs$_2$O$_6$, the desired topological transition does occur under uniform compressive strain. Our study paves a way to realize a topological insulating state in a complex oxide, which has not been experimentally demonstrated so far.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا