Do you want to publish a course? Click here

Quasi-two-dimensional Bose-Einstein condensation of spin triplets in dimerized quantum magnet Ba$_2$CuSi$_2$O$_6$Cl$_2$

146   0   0.0 ( 0 )
 Added by Hidekazu Tanaka
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We synthesized single crystals of composition Ba$_2$CuSi$_2$O$_6$Cl$_2$ and investigated its quantum magnetic properties. The crystal structure is closely related to that of the quasi-two-dimensional (2D) dimerized magnet BaCuSi$_2$O$_6$ also known as Han purple. Ba$_2$CuSi$_2$O$_6$Cl$_2$ has a singlet ground state with an excitation gap of ${Delta}/k_{rm B},{=},20.8$ K. The magnetization curves for two different field directions almost perfectly coincide when normalized by the $g$-factor except for a small jump anomaly for a magnetic field perpendicular to the $c$ axis. The magnetization curve with a nonlinear slope above the critical field is in excellent agreement with exact-diagonalization calculations based on a 2D coupled spin-dimer model. Individual exchange constants are also evaluated using density functional theory (DFT). The DFT results demonstrate a 2D exchange network and weak frustration between interdimer exchange interactions, supported by weak spin-lattice coupling implied from our magnetostriction data. The magnetic-field-induced spin ordering in Ba$_2$CuSi$_2$O$_6$Cl$_2$ is described as the quasi-2D Bose-Einstein condensation of triplets.



rate research

Read More

The search for flat-band solid-state realizations is a crucial issue to verify or to challenge theoretical predictions for quantum many-body flat-band systems. For frustrated quantum magnets flat bands lead to various unconventional properties related to the existence of localized many-magnon states. The recently synthesized magnetic compound Ba$_2$CoSi$_2$O$_6$Cl$_2$ seems to be an almost perfect candidate to observe these features in experiments. We develop a theory for Ba$_2$CoSi$_2$O$_6$Cl$_2$ by adapting the localized-magnon concept to this compound. We first show that our theory describes the known experimental facts and then we propose new experimental studies to detect a field-driven phase transition related to a Wigner-crystal-like ordering of localized magnons at low temperatures.
We report detailed neutron scattering studies on Ba$_2$Cu$_3$O$_4$Cl$_2$. The compound consists of two interpenetrating sublattices of Cu, labeled as Cu$_{rm A}$ and Cu$_{rm B}$, each of which forms a square-lattice Heisenberg antiferromagnet. The two sublattices order at different temperatures and effective exchange couplings within the sublattices differ by an order of magnitude. This yields an inelastic neutron spectrum of the Cu$_{rm A}$ sublattice extending up to 300 meV and a much weaker dispersion of Cu$_{rm B}$ going up to around 20 meV. Using a single-band Hubbard model we derive an effective spin Hamiltonian. From this, we find that linear spin-wave theory gives a good description to the magnetic spectrum. In addition, a magnetic field of 10 T is found to produce effects on the Cu$_{rm B}$ dispersion that cannot be explained by conventional spin-wave theory.
We report the magnetization ($chi$, $M$), specific heat ($C_{text{P}}$), and neutron powder diffraction results on a quasi-two-dimensional $S$ = 2 square lattice antiferromagnet Ba$_2$FeSi$_2$O$_7$ consisting of FeO$_4$ tetragons with a large compressive distortion (27%). Despite of the quasi-two-dimensional lattice structure, both $chi$ and $C_{text{P}}$ present three dimensional magnetic long-range order below the Neel temperature $T_{text{N}}$ = 5.2 K. Neutron diffraction data shows a collinear $Q_{m}$ = (1,0,0.5) antiferromagnetic (AFM) structure with the in-plane ordered magnetic moment suppressed by 26% below $T_{text{N}}$. Both the AFM structure and the suppressed moments are well explained by the Monte Carlo simulation with a large single-ion ab-plane anisotropy $D$ = 1.4 meV and a rather small in-plane Heisenberg exchange $J_{text{intra}}$ = 0.15 meV. The characteristic two dimensional spin fluctuations can be recognized in the magnetic entropy release and diffuse scattering above $T_{text{N}}$. This new quasi-2D magnetic system also displays unusual non-monotonic dependence of the $T_{text{N}}$ as a function of magnetic field $H$.
We report results of an electron spin resonance (ESR) study of a spin-gap antiferromagnet (C$_4$H$_{12}$N$_2$)(Cu$_2$Cl$_6$) (nicknamed PHCC) with chlorine ions partially substituted by bromine. We found that up to 10% of nominal doping the contribution of the random defects to the absorption spectra remains at about 0.1% per copper ion, almost the same as in the pure system. Instead, a particular kind of ESR absorption corresponding to gapless S=1 triplets is observed at low temperatures in samples with high nominal bromine content x>5%. Increase of bromine concentration also leads to the systematic broadening of ESR absorption line indicating reduction of the quasi-particles lifetime.
SrCuTe$_2$O$_6$ consists of a 3-dimensional arrangement of spin-$frac{1}{2}$ Cu$^{2+}$ ions. The 1st, 2nd and 3rd neighbor interactions respectively couple Cu$^{2+}$ moments into a network of isolated triangles, a highly frustrated hyperkagome lattice consisting of corner sharing triangles and antiferromagnetic chains. Of these, the chain interaction dominates in SrCuTe$_2$O$_6$ while the other two interactions lead to frustrated inter-chain coupling giving rise to long range magnetic order at suppressed temperatures. In this paper, we investigate the magnetic properties in SrCuTe$_2$O$_6$ using muon relaxation spectroscopy and neutron diffraction and present the low temperature magnetic structure.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا