Do you want to publish a course? Click here

Neural Inverse Text Normalization

369   0   0.0 ( 0 )
 Added by Monica Sunkara
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

While there have been several contributions exploring state of the art techniques for text normalization, the problem of inverse text normalization (ITN) remains relatively unexplored. The best known approaches leverage finite state transducer (FST) based models which rely on manually curated rules and are hence not scalable. We propose an efficient and robust neural solution for ITN leveraging transformer based seq2seq models and FST-based text normalization techniques for data preparation. We show that this can be easily extended to other languages without the need for a linguistic expert to manually curate them. We then present a hybrid framework for integrating Neural ITN with an FST to overcome common recoverable errors in production environments. Our empirical evaluations show that the proposed solution minimizes incorrect perturbations (insertions, deletions and substitutions) to ASR output and maintains high quality even on out of domain data. A transformer based model infused with pretraining consistently achieves a lower WER across several datasets and is able to outperform baselines on English, Spanish, German and Italian datasets.



rate research

Read More

The prosody of a spoken word is determined by its surrounding context. In incremental text-to-speech synthesis, where the synthesizer produces an output before it has access to the complete input, the full context is often unknown which can result in a loss of naturalness in the synthesized speech. In this paper, we investigate whether the use of predicted future text can attenuate this loss. We compare several test conditions of next future word: (a) unknown (zero-word), (b) language model predicted, (c) randomly predicted and (d) ground-truth. We measure the prosodic features (pitch, energy and duration) and find that predicted text provides significant improvements over a zero-word lookahead, but only slight gains over random-word lookahead. We confirm these results with a perceptive test.
The neural text generation suffers from the text degeneration issue such as repetition. Traditional stochastic sampling methods only focus on truncating the unreliable tail of the distribution, and do not address the head part, which we show might contain tedious or even repetitive candidates with high probability that lead to repetition loops. They also do not consider the issue that human text does not always favor high-probability words. Inspired by these, in this work we propose a heuristic sampling method. We propose to use interquartile range of the predicted distribution to determine the head part, then permutate and rescale the head with inverse probability. This aims at decreasing the probability for the tedious and possibly repetitive candidates with higher probability, and increasing the probability for the rational but more surprising candidates with lower probability. The proposed algorithm provides a reasonable permutation on the predicted distribution which enhances diversity without compromising rationality of the distribution. We use pre-trained language model to compare our algorithm with traditional methods. Results show that our algorithm can effectively increase the diversity of generated samples while achieving close resemblance to human text.
Its natural these days for people to know the local events from massive documents. Many texts contain location information, such as city name or road name, which is always incomplete or latent. Its significant to extract the administrative area of the text and organize the hierarchy of area, called location normalization. Existing detecting location systems either exclude hierarchical normalization or present only a few specific regions. We propose a system named ROIBase that normalizes the text by the Chinese hierarchical administrative divisions. ROIBase adopts a co-occurrence constraint as the basic framework to score the hit of the administrative area, achieves the inference by special embeddings, and expands the recall by the ROI (region of interest). It has high efficiency and interpretability because it mainly establishes on the definite knowledge and has less complex logic than the supervised models. We demonstrate that ROIBase achieves better performance against feasible solutions and is useful as a strong support system for location normalization.
Speech-to-text translation (ST), which directly translates the source language speech to the target language text, has attracted intensive attention recently. However, the combination of speech recognition and machine translation in a single model poses a heavy burden on the direct cross-modal cross-lingual mapping. To reduce the learning difficulty, we propose COnSecutive Transcription and Translation (COSTT), an integral approach for speech-to-text translation. The key idea is to generate source transcript and target translation text with a single decoder. It benefits the model training so that additional large parallel text corpus can be fully exploited to enhance the speech translation training. Our method is verified on three mainstream datasets, including Augmented LibriSpeech English-French dataset, TED English-German dataset, and TED English-Chinese dataset. Experiments show that our proposed COSTT outperforms the previous state-of-the-art methods. The code is available at https://github.com/dqqcasia/st.
Text normalization (TN) and inverse text normalization (ITN) are essential preprocessing and postprocessing steps for text-to-speech synthesis and automatic speech recognition, respectively. Many methods have been proposed for either TN or ITN, ranging from weighted finite-state transducers to neural networks. Despite their impressive performance, these methods aim to tackle only one of the two tasks but not both. As a result, in a complete spoken dialog system, two separate models for TN and ITN need to be built. This heterogeneity increases the technical complexity of the system, which in turn increases the cost of maintenance in a production setting. Motivated by this observation, we propose a unified framework for building a single neural duplex system that can simultaneously handle TN and ITN. Combined with a simple but effective data augmentation method, our systems achieve state-of-the-art results on the Google TN dataset for English and Russian. They can also reach over 95% sentence-level accuracy on an internal English TN dataset without any additional fine-tuning. In addition, we also create a cleaned dataset from the Spoken Wikipedia Corpora for German and report the performance of our systems on the dataset. Overall, experimental results demonstrate the proposed duplex text normalization framework is highly effective and applicable to a range of domains and languages
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا