No Arabic abstract
In the context of stochastic homogenization, the Bourgain-Spencer conjecture states that the ensemble-averaged solution of a divergence-form linear elliptic equation with random coefficients admits an intrinsic description in terms of higher-order homogenized equations with an accuracy four times better than the almost sure solution itself. While previous rigorous results were restricted to a perturbative regime with small ellipticity ratio, we prove the first half of this conjecture for the first time in a non-perturbative setting. Our approach involves the construction of a new corrector theory in stochastic homogenization: while only a bounded number of correctors can be constructed as stationary $L^2$ random fields, we show that twice as many stationary correctors can be defined in a Schwartz-like distributional sense on the probability space.
This contribution is concerned with the effective viscosity problem, that is, the homogenization of the steady Stokes system with a random array of rigid particles, for which the main difficulty is the treatment of close particles. Standard approaches in the literature have addressed this issue by making moment assumptions on interparticle distances. Such assumptions however prevent clustering of particles, which is not compatible with physically-relevant particle distributions. In this contribution, we take a different perspective and consider moment bounds on the size of clusters of close particles. On the one hand, assuming such bounds, we construct correctors and prove homogenization (using a variational formulation and $Gamma$-convergence to avoid delicate pressure issues). On the other hand, based on subcritical percolation techniques, these bounds are shown to hold for various mixing particle distributions with nontrivial clustering. As a by-product of the analysis, we also obtain similar homogenization results for compressible and incompressible linear elasticity with unbounded random stiffness.
Corrector estimates constitute a key ingredient in the derivation of optimal convergence rates via two-scale expansion techniques in homogenization theory of random uniformly elliptic equations. The present work follows up - in terms of corrector estimates - on the recent work of Fischer and Neukamm (arXiv:1908.02273) which provides a quantitative stochastic homogenization theory of nonlinear uniformly elliptic equations under a spectral gap assumption. We establish optimal-order estimates (with respect to the scaling in the ratio between the microscopic and the macroscopic scale) for higher-order linearized correctors. A rather straightforward consequence of the corrector estimates is the higher-order regularity of the associated homogenized monotone operator.
This work is devoted to the asymptotic behavior of eigenvalues of an elliptic operator with rapidly oscillating random coefficients on a bounded domain with Dirichlet boundary conditions. A sharp convergence rate is obtained for isolated eigenvalues towards eigenvalues of the homogenized problem, as well as a quantitative two-scale expansion result for eigenfunctions. Next, a quantitative central limit theorem is established for eigenvalue fluctuations; more precisely, a pathwise characterization of eigenvalue fluctuations is obtained in terms of the so-called homogenization commutator, in parallel with the recent fluctuation theory for the solution operator.
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous statistics) and fast decay of correlations on scales larger than the microscale $varepsilon>0$, we establish homogenization error estimates of the order $varepsilon$ in case $dgeq 3$, respectively of the order $varepsilon |log varepsilon|^{1/2}$ in case $d=2$. Previous results in nonlinear stochastic homogenization have been limited to a small algebraic rate of convergence $varepsilon^delta$. We also establish error estimates for the approximation of the homogenized operator by the method of representative volumes of the order $(L/varepsilon)^{-d/2}$ for a representative volume of size $L$. Our results also hold in the case of systems for which a (small-scale) $C^{1,alpha}$ regularity theory is available.
This work develops a quantitative homogenization theory for random suspensions of rigid particles in a steady Stokes flow, and completes recent qualitative results. More precisely, we establish a large-scale regularity theory for this Stokes problem, and we prove moment bounds for the associated correctors and optimal estimates on the homogenization error; the latter further requires a quantitative ergodicity assumption on the random suspension. Compared to the corresponding quantitative homogenization theory for divergence-form linear elliptic equations, substantial difficulties arise from the analysis of the fluid incompressibility and the particle rigidity constraints. Our analysis further applies to the problem of stiff inclusions in (compressible or incompressible) linear elasticity and in electrostatics; it is also new in those cases, even in the periodic setting.