Do you want to publish a course? Click here

Continuum percolation in stochastic homogenization and the effective viscosity problem

123   0   0.0 ( 0 )
 Added by Mitia Duerinckx
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

This contribution is concerned with the effective viscosity problem, that is, the homogenization of the steady Stokes system with a random array of rigid particles, for which the main difficulty is the treatment of close particles. Standard approaches in the literature have addressed this issue by making moment assumptions on interparticle distances. Such assumptions however prevent clustering of particles, which is not compatible with physically-relevant particle distributions. In this contribution, we take a different perspective and consider moment bounds on the size of clusters of close particles. On the one hand, assuming such bounds, we construct correctors and prove homogenization (using a variational formulation and $Gamma$-convergence to avoid delicate pressure issues). On the other hand, based on subcritical percolation techniques, these bounds are shown to hold for various mixing particle distributions with nontrivial clustering. As a by-product of the analysis, we also obtain similar homogenization results for compressible and incompressible linear elasticity with unbounded random stiffness.



rate research

Read More

62 - Mitia Duerinckx 2021
In the context of stochastic homogenization, the Bourgain-Spencer conjecture states that the ensemble-averaged solution of a divergence-form linear elliptic equation with random coefficients admits an intrinsic description in terms of higher-order homogenized equations with an accuracy four times better than the almost sure solution itself. While previous rigorous results were restricted to a perturbative regime with small ellipticity ratio, we prove the first half of this conjecture for the first time in a non-perturbative setting. Our approach involves the construction of a new corrector theory in stochastic homogenization: while only a bounded number of correctors can be constructed as stationary $L^2$ random fields, we show that twice as many stationary correctors can be defined in a Schwartz-like distributional sense on the probability space.
65 - Mitia Duerinckx 2020
This work is devoted to the definition and the analysis of the effective viscosity associated with a random suspension of small rigid particles in a steady Stokes fluid. While previous works on the topic have been conveniently assuming that particles are uniformly separated, we relax this restrictive assumption in form of mild moment bounds on interparticle distances.
81 - Sebastian Hensel 2020
Corrector estimates constitute a key ingredient in the derivation of optimal convergence rates via two-scale expansion techniques in homogenization theory of random uniformly elliptic equations. The present work follows up - in terms of corrector estimates - on the recent work of Fischer and Neukamm (arXiv:1908.02273) which provides a quantitative stochastic homogenization theory of nonlinear uniformly elliptic equations under a spectral gap assumption. We establish optimal-order estimates (with respect to the scaling in the ratio between the microscopic and the macroscopic scale) for higher-order linearized correctors. A rather straightforward consequence of the corrector estimates is the higher-order regularity of the associated homogenized monotone operator.
We derive optimal-order homogenization rates for random nonlinear elliptic PDEs with monotone nonlinearity in the uniformly elliptic case. More precisely, for a random monotone operator on $mathbb{R}^d$ with stationary law (i.e. spatially homogeneous statistics) and fast decay of correlations on scales larger than the microscale $varepsilon>0$, we establish homogenization error estimates of the order $varepsilon$ in case $dgeq 3$, respectively of the order $varepsilon |log varepsilon|^{1/2}$ in case $d=2$. Previous results in nonlinear stochastic homogenization have been limited to a small algebraic rate of convergence $varepsilon^delta$. We also establish error estimates for the approximation of the homogenized operator by the method of representative volumes of the order $(L/varepsilon)^{-d/2}$ for a representative volume of size $L$. Our results also hold in the case of systems for which a (small-scale) $C^{1,alpha}$ regularity theory is available.
The Navier-Stokes equation driven by heat conduction is studied. As a prototype we consider Rayleigh-Benard convection, in the Boussinesq approximation. Under a large aspect ratio assumption, which is the case in Rayleigh-Benard experiments with Prandtl number close to one, we prove the existence of a global strong solution to the 3D Navier-Stokes equation coupled with a heat equation, and the existence of a maximal B-attractor. A rigorous two-scale limit is obtained by homogenization theory. The mean velocity field is obtained by averaging the two-scale limit over the unit torus in the local variable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا