No Arabic abstract
We investigate the effect of the mass anisotropy on Friedel Oscillations, Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction, screening properties, and Boltzmann transport in two dimensional (2D) metallic and doped semiconductor systems. We calculate the static polarizability and the dielectric function within the random phase approximation with the mass anisotropy fully taken into account without making any effective isotropic approximation in the theory. We find that carrier screening exhibits an isotropic behavior for small momenta despite the anisotropy of the system, and becomes strongly anisotropic above a certain threshold momentum. Such an anisotropy of screening leads to anisotropic Friedel oscillations, and an anisotropic RKKY interaction characterized by a periodicity dependent on the direction between the localized magnetic moments. We also explore the disorder limited dc transport properties in the presence of mass anisotropy based on the Boltzmann transport theory. Interestingly, we find that the anisotropy ratio of the short range disorder limited resistivity along the heavy- and light-mass directions is always the same as the mass anisotropy ratio whereas for the long range disorder limited resistivity the anisotropy ratio is the same as the mass ratio only in the low density limit, and saturates to the square root of the mass ratio in the high density limit. Our theoretical work should apply to many existing and to-be-discovered anisotropic 2D systems.
We develop a theory for the non-equilibrium screening of a charged impurity in a two-dimensional electron system under a strong time-periodic drive. Our analysis of the time-averaged polarization function and dielectric function reveals that Floquet driving modifies the screened impurity potential in two main regimes. In the weak drive regime, the time-averaged screened potential exhibits unconventional Friedel oscillations with multiple spatial periods contributed by a principal period modulated by higher-order periods, which are due to the emergence of additional Kohn anomalies in the polarization function. In the strong drive regime, the time-averaged impurity potential becomes almost unscreened and does not exhibit Friedel oscillations. This tunable Friedel oscillations is a result of the dynamic gating effect of the time-dependent driving field on the two-dimensional electron system.
We calculate the screening function in bilayer graphene (BLG) both in the intrinsic (undoped) and the extrinsic (doped) regime within random phase approximation, comparing our results with the corresponding single layer graphene (SLG) and the regular two dimensional electron gas (2DEG). We find that the Kohn anomaly is strongly enhanced in BLG. We also discuss the Friedel oscillation and the RKKY interaction, which are associated with the non-analytic behavior of the screening function at $q=2k_F$. We find that the Kohn anomaly, the Friedel oscillation, and the RKKY interaction are all qualitatively different in the BLG compared with the SLG and the 2DEG.
We investigate the response of 3D Luttinger semimetals to localized charge and spin impurities as a function of doping. The strong spin-orbit coupling of these materials strongly influences the Friedel oscillations and RKKY interactions. This can be seen at short distances with an $1/r^4$ divergence of the responses, and anisotropic behavior. Certain of the spin-orbital signatures are robust to temperature, even if the charge and spin oscillations are smeared out, and give an unusual diamagnetic Pauli susceptibility. We compare our results to the experimental literature on the bismuth-based half-Heuslers such as YPtBi and on the pyrochlore iridate Pr$_2$Ir$_2$O$_7$.
By exploiting our recently derived exact formula for the Lindhard polarization function in the presence of Bychkov-Rashba (BR) and Dresselhaus (D) spin-orbit interaction (SOI), we show that the interplay of different SOI mechanisms induces highly anisotropic modifications of the static dielectric function. We find that under certain circumstances the polarization function exhibits doubly-singular behavior, which leads to an intriguing novel phenomenon, beating of Friedel oscillations. This effect is a general feature of systems with BR+D SOI and should be observed in structures with a sufficiently strong SOI.
Screening in reduced dimensions has strong consequences on the electronic properties in van der Waals semiconductors, impacting the quasiparticle band gap and exciton binding energy. Screening in these materials is typically treated isotropically, yet black phosphorus exhibits in-plane electronic anisotropy seen in its effective mass, carrier mobility, excitonic wavefunctions, and plasmonic dispersion. Here, we use the adsorption of individual potassium atoms on the surface of black phosphorus to vary the near-surface doping over a wide range, while simultaneously probing the dielectric screening via the ordering of the adsorbed atoms. Using scanning tunneling microscopy, we visualize the role of strongly anisotropic screening which leads to the formation of potassium chains with a well-defined orientation and spacing. We quantify the mean interaction potential utilizing statistical methods and find that the dimensionality and anisotropy of the screening is consistent with the presence of a band-bending induced confinement potential near the surface. We corroborate the observed behavior with coverage-dependent studies of the electronic structure with angle-resolved photoemission.