No Arabic abstract
We present optical VLT/MUSE integral field spectroscopy data of the merging galaxy NGC 1487. We use fitting techniques to study the ionized gas emission of this merger and its main morphological and kinematical properties. We measured flat and sometimes inverted oxygen abundance gradients in the subsystems composing NGC 1487, explained by metal mixing processes common in merging galaxies. We also measured widespread star-forming bursts, indicating that photoionisation by stars is the primary ionization source of the galaxy. The kinematic map revealed a rotating pattern in the gas in the northern tail of the system, suggesting that the galaxy may be in the process of rebuilding a disc. The gas located in the central region has larger velocity dispersion ($sigmaapprox 50$ km s$^{-1}$) than the remaining regions, indicating kinematic heating, possibly owing to the ongoing interaction. Similar trends were, however, not observed in the stellar velocity-dispersion map, indicating that the galaxy has not yet achieved equilibrium, and the nebular and stellar components are still kinematically decoupled. Based on all our measurements and findings, and specially on the mass estimates, metallicity gradients and velocity fields of the system, we propose that NGC 1487 is the result of an ongoing merger event involving smallish dwarf galaxies within a group, in a pre-merger phase, resulting in a relic with mass and physical parameters similar to a dwarf galaxy. Thus, we may be witnessing the formation of a dwarf galaxy by merging of smaller clumps at z=0.
A number of planetary nebulae show binary central stars and significant abundance discrepancies between values estimated from colisionally excited lines when compared to the same abundances estimated from recombination lines. One approach to investigate this yet unsolved problem is using spatially resolved images of emission lines in an attempt to detect a possibly distinct metal rich component in the nebula. In this work we present results of spatially resolved bundance analysis of NGC 6778 based on data gathered from VLT VIMOS-IFU. We discuss the spatial variations found as well as possible limitations of the method in answering questions about abundance variations.
We report ~2 resolution Atacama Large Millimeter/submillimeter Array observations of the HCN(1-0), HCO+(1-0), CO(1-0), CO(2-1), and CO(3-2) lines towards the nearby merging double-nucleus galaxy NGC 3256. We find that the high density gas outflow traced in HCN(1-0) and HCO+(1-0) emission is co-located with the diffuse molecular outflow emanating from the southern nucleus, where a low-luminosity active galactic nucleus (AGN) is believed to be the dominant source of the far-infrared luminosity. On the other hand, the same lines were undetected in the outflow region associated with the northern nucleus, whose primary heating source is likely related to starburst activity without obvious signs of AGN. Both HCO+(1-0)/CO(1-0) line ratio (i.e. dense gas fraction) and the CO(3-2)/CO(1-0) line ratio are larger in the southern outflow (0.20$pm$0.04 and 1.3$pm$0.2, respectively) than in the southern nucleus (0.08$pm$0.01, 0.7$pm$0.1, respectively). By investigating these line ratios for each velocity component in the southern outflow, we find that the dense gas fraction increases and the CO(3-2)/CO(1-0) line ratio decreases towards the largest velocity offset. This suggests the existence of a two-phase (diffuse and clumpy) outflow. One possible scenario to produce such a two-phase outflow is an interaction between the jet and the interstellar medium, which possibly triggers shocks and/or star formation associated with the outflow.
Deep and wide-field optical photometric observations along with multiwavelength archival datasets have been employed to study the physical properties of the cluster NGC 6910. The study also examines the impact of massive stars to their environment. The age, distance and reddening of the cluster are estimated to be $sim$4.5 Myr, $1.72pm0.08$ kpc, and $ E(B-V)_{min}= 0.95$ mag, respectively. The mass function slope ($Gamma = -0.74pm0.15$ in the cluster region is found to be flatter than the Salpeter value (-1.35), indicating the presence of excess number of massive stars. The cluster also shows mass segregation towards the central region due to their formation processes. The distribution of warm dust emission is investigated towards the central region of the cluster, showing the signature of the impact of massive stars within the cluster region. Radio continuum clumps powered by massive B-type stars (age range $sim$ 0.07-0.12 Myr) are traced, which are located away from the center of the stellar cluster NGC 6910 (age $sim$ 4.5 Myr). Based on the values of different pressure components exerted by massive stars, the photoionized gas associated with the cluster is found to be the dominant feedback mechanism in the cluster. Overall, the massive stars in the cluster might have triggered the birth of young massive B-type stars in the cluster. This argument is supported with evidence of the observed age gradient between the cluster and the powering sources of the radio clumps.
We employ MUSE/VLT data to study the ionised and highly ionised gas phases of the feedback in Circinus, the closest Seyfert 2 galaxy to us. The analysis of the nebular emission allowed us to detect a remarkable high-ionisation gas outflow beyond the galaxy plane traced by the coronal lines [Fe VII] $lambda$6089 and [Fe X] $lambda$6374, extending up to 700 pc and 350 pc NW from the nucleus, respectively. This is the first time that the [Fe X] emission is observed at such distances from the central engine in an AGN. The gas kinematics reveals expanding gas shells with velocities of a few hundred km s$^{-1}$, spatially coincident with prominent hard X-ray emission detected by Chandra. Density and temperature sensitive line ratios show that the extended high-ionisation gas is characterized by a temperature reaching 25000 K and an electron density > 10$^2$ cm$^{-3}$. We found that local gas excitation by shocks produced by the passage of a radio jet leads to the spectacular high-ionisation emission in this object. This hypothesis is fully supported by photoionisation models that accounts for the combined effects of the central engine and shocks. They reproduce the observed emission line spectrum at different locations inside and outside of the NW ionisation cone. The energetic outflow produced by the radio jet is spatially located close to an extended molecular outflow recently reported using ALMA which suggests that they both represent different phases of the same feedback process acting on the AGN.
An investigation on the possible dynamical models of the core galaxy NGC 1399 is performed. Because early-type galaxies are likely to be formed through merging events, remnant rings are considered in the modeling process. A numerical survey over three parameters is employed to obtain the best-fit models that are completely consistent with observations. It is found that the inner slope of dark matter profile is a cuspy one for this core galaxy. The existence of remnant rings in best-fit models indicates a merging history. The remnant ring explains the flatten surface brightness, and thus could be the physical counterpart of the core structure of NGC 1399.