Do you want to publish a course? Click here

Provable Defense Against Delusive Poisoning

79   0   0.0 ( 0 )
 Added by Lue Tao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Delusive poisoning is a special kind of attack to obstruct learning, where the learning performance could be significantly deteriorated by only manipulating (even slightly) the features of correctly labeled training examples. By formalizing this malicious attack as finding the worst-case distribution shift at training time within a specific $infty$-Wasserstein ball, we show that minimizing adversarial risk on the poison data is equivalent to optimizing an upper bound of natural risk on the original data. This implies that adversarial training can be a principled defense method against delusive poisoning. To further understand the internal mechanism of the defense, we disclose that adversarial training can resist the training distribution shift by preventing the learner from overly relying on non-robust features in a natural setting. Finally, we complement our theoretical findings with a set of experiments on popular benchmark datasets, which shows that the defense withstands six different practical attacks. Both theoretical and empirical results vote for adversarial training when confronted with delusive poisoning.



rate research

Read More

Targeted clean-label data poisoning is a type of adversarial attack on machine learning systems in which an adversary injects a few correctly-labeled, minimally-perturbed samples into the training data, causing a model to misclassify a particular test sample during inference. Although defenses have been proposed for general poisoning attacks, no reliable defense for clean-label attacks has been demonstrated, despite the attacks effectiveness and realistic applications. In this work, we propose a simple, yet highly-effective Deep k-NN defense against both feature collision and convex polytope clean-label attacks on the CIFAR-10 dataset. We demonstrate that our proposed strategy is able to detect over 99% of poisoned examples in both attacks and remove them without compromising model performance. Additionally, through ablation studies, we discover simple guidelines for selecting the value of k as well as for implementing the Deep k-NN defense on real-world datasets with class imbalance. Our proposed defense shows that current clean-label poisoning attack strategies can be annulled, and serves as a strong yet simple-to-implement baseline defense to test future clean-label poisoning attacks. Our code is available at https://github.com/neeharperi/DeepKNNDefense
Federated learning (FL) is a popular distributed learning framework that can reduce privacy risks by not explicitly sharing private data. However, recent works demonstrated that sharing model updates makes FL vulnerable to inference attacks. In this work, we show our key observation that the data representation leakage from gradients is the essential cause of privacy leakage in FL. We also provide an analysis of this observation to explain how the data presentation is leaked. Based on this observation, we propose a defense against model inversion attack in FL. The key idea of our defense is learning to perturb data representation such that the quality of the reconstructed data is severely degraded, while FL performance is maintained. In addition, we derive certified robustness guarantee to FL and convergence guarantee to FedAvg, after applying our defense. To evaluate our defense, we conduct experiments on MNIST and CIFAR10 for defending against the DLG attack and GS attack. Without sacrificing accuracy, the results demonstrate that our proposed defense can increase the mean squared error between the reconstructed data and the raw data by as much as more than 160X for both DLG attack and GS attack, compared with baseline defense methods. The privacy of the FL system is significantly improved.
In a poisoning attack, an adversary with control over a small fraction of the training data attempts to select that data in a way that induces a corrupted model that misbehaves in favor of the adversary. We consider poisoning attacks against convex machine learning models and propose an efficient poisoning attack designed to induce a specified model. Unlike previous model-targeted poisoning attacks, our attack comes with provable convergence to {it any} attainable target classifier. The distance from the induced classifier to the target classifier is inversely proportional to the square root of the number of poisoning points. We also provide a lower bound on the minimum number of poisoning points needed to achieve a given target classifier. Our method uses online convex optimization, so finds poisoning points incrementally. This provides more flexibility than previous attacks which require a priori assumption about the number of poisoning points. Our attack is the first model-targeted poisoning attack that provides provable convergence for convex models, and in our experiments, it either exceeds or matches state-of-the-art attacks in terms of attack success rate and distance to the target model.
We present a method for provably defending any pretrained image classifier against $ell_p$ adversarial attacks. This method, for instance, allows public vision API providers and users to seamlessly convert pretrained non-robust classification services into provably robust ones. By prepending a custom-trained denoiser to any off-the-shelf image classifier and using randomized smoothing, we effectively create a new classifier that is guaranteed to be $ell_p$-robust to adversarial examples, without modifying the pretrained classifier. Our approach applies to both the white-box and the black-box settings of the pretrained classifier. We refer to this defense as denoised smoothing, and we demonstrate its effectiveness through extensive experimentation on ImageNet and CIFAR-10. Finally, we use our approach to provably defend the Azure, Google, AWS, and ClarifAI image classification APIs. Our code replicating all the experiments in the paper can be found at: https://github.com/microsoft/denoised-smoothing.
Recent studies have shown that deep neural networks (DNNs) are highly vulnerable to adversarial attacks, including evasion and backdoor (poisoning) attacks. On the defense side, there have been intensive interests in both empirical and provable robustness against evasion attacks; however, provable robustness against backdoor attacks remains largely unexplored. In this paper, we focus on certifying robustness against backdoor attacks. To this end, we first provide a unified framework for robustness certification and show that it leads to a tight robustness condition for backdoor attacks. We then propose the first robust training process, RAB, to smooth the trained model and certify its robustness against backdoor attacks. Moreover, we evaluate the certified robustness of a family of smoothed models which are trained in a differentially private fashion, and show that they achieve better certified robustness bounds. In addition, we theoretically show that it is possible to train the robust smoothed models efficiently for simple models such as K-nearest neighbor classifiers, and we propose an exact smooth-training algorithm which eliminates the need to sample from a noise distribution. Empirically, we conduct comprehensive experiments for different machine learning (ML) models such as DNNs, differentially private DNNs, and K-NN models on MNIST, CIFAR-10 and ImageNet datasets (focusing on binary classifiers), and provide the first benchmark for certified robustness against backdoor attacks. In addition, we evaluate K-NN models on a spambase tabular dataset to demonstrate the advantages of the proposed exact algorithm. Both the theoretical analysis and the comprehensive benchmark on diverse ML models and datasets shed lights on further robust learning strategies against training time attacks or other general adversarial attacks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا