No Arabic abstract
Displacement calibration of nanomechanical plate resonators presents a challenging task. Large nanomechanical resonator thickness reduces the amplitude of the resonator motion due to its increased spring constant and mass, and its unique reflectance. Here, we show that the plate thickness, resonator gap height, and motional amplitude of circular and elliptical drum resonators, can be determined in-situ by exploiting the fundamental interference phenomenon in Fabry-Perot cavities. The proposed calibration scheme uses optical contrasts to uncover thickness and spacer height profiles, and reuse the results to convert the photodetector signal to the displacement of drumheads that are electromotively driven in their linear regime. Calibrated frequency response and spatial mode maps enable extraction of the modal radius, effective mass, effective driving force, and Youngs elastic modulus of the drumhead material. This scheme is applicable to any configuration of Fabry-Perot cavities, including plate and membrane resonators.
Complex oxide thin films and heterostructures exhibit a profusion of exotic phenomena, often resulting from the intricate interplay between film and substrate. Recently it has become possible to isolate epitaxially grown single-crystalline layers of these materials, enabling the study of their properties in the absence of interface effects. In this work, we create ultrathin membranes of strongly correlated materials and demonstrate top-down fabrication of nanomechanical resonators made out of ce{SrTiO3} and ce{SrRuO3}. Using laser interferometry, we successfully actuate and measure the motion of the nanodrum resonators. By measuring their temperature-dependent mechanical response, we observe signatures of structural phase transitions in ce{SrTiO3}, which affect the strain and mechanical dissipation in the resonators. This approach can be extended to investigate phase transitions in a wide range of materials. Our study demonstrates the feasibility of integrating ultrathin complex oxide membranes for realizing nanoelectromechanical systems on arbitrary substrates.
Surface acoustic wave (SAW) resonators are critical components in wireless communications and many sensing applications. They have also recently emerged as subject of study in quantum acoustics at the single phonon level. Acoustic loss reduction and mode confinement are key performance factors in SAW resonators. Here we report the design and experimental realization of a high quality factor Fabry-Perot SAW resonators formed in between tapered phononic crystal mirrors patterned on a GaN-on-sapphire material platform . The fabricated SAW resonators are characterized by both electrical network analyzer and optical heterodyne vibrometer. We observed standing Rayleigh wave inside the cavity, with an intrinsic quality factor exceeding 13,000 at ambient conditions.
We report on a nanomechanical engineering method to monitor matter growth in real time via e-beam electromechanical coupling. This method relies on the exceptional mass sensing capabilities of nanomechanical resonators. Focused electron beam induced deposition (FEBID) is employed to selectively grow platinum particles at the free end of singly clamped nanotube cantilevers. The electron beam has two functions: it allows both to grow material on the nanotube and to track in real time the deposited mass by probing the noise-driven mechanical resonance of the nanotube. On the one hand, this detection method is highly effective as it can resolve mass deposition with a resolution in the zeptogram range; on the other hand, this method is simple to use and readily available to a wide range of potential users, since it can be operated in existing commercial FEBID systems without making any modification. The presented method allows to engineer hybrid nanomechanical resonators with precisely tailored functionality. It also appears as a new tool for studying growth dynamics of ultra-thin nanostructures, opening new opportunities for investigating so far out-of-reach physics of FEBID and related methods.
Systems with low mechanical dissipation are extensively used in precision measurements such as gravitational wave detection, atomic force microscopy and quantum control of mechanical oscillators via opto- and electromechanics. The mechanical quality factor ($Q$) of these systems determines the thermomechanical force noise and the thermal decoherence rate of mechanical quantum states. While the dissipation rate is typically set by the bulk acoustic properties of the material, by exploiting dissipation dilution, mechanical $Q$ can be engineered through geometry and increased by many orders of magnitude. Recently, soft clamping in combination with strain engineering has enabled room temperature quality factors approaching one billion ($10^9$) in millimeter-scale resonators. Here we demonstrate a new approach to soft clamping which exploits vibrations in the perimeter of polygon-shaped resonators tethered at their vertices. In contrast to previous approaches, which rely on cascaded elements to achieve soft clamping, perimeter modes are soft clamped due to symmetry and the boundary conditions at the polygon vertices. Perimeter modes reach $Q$ of 3.6 billion at room temperature while spanning only two acoustic wavelengths---a 4-fold improvement over the state-of-the-art mechanical $Q$ with 10-fold smaller devices. The small size of our devices makes them well-suited for near-field integration with microcavities for quantum optomechanical experiments. Moreover, their compactness allows the realization of phononic lattices. We demonstrate a one-dimensional Su-Schrieffer-Heeger chain of high-$Q$ perimeter modes coupled via nearest-neighbour interaction and characterize the localized edge modes.
Studies involving nanomechanical motion have evolved from its detection and understanding of its fundamental aspects to its promising practical utility as an integral component of hybrid systems. Nanomechanical resonators indispensable role as transducers between optical and microwave fields in hybrid systems, such as quantum communications interface, have elevated their importance in recent years. It is therefore crucial to determine which among the family of nanomechanical resonators is more suitable for this role. Most of the studies revolve around nanomechanical resonators of ultrathin structures because of their inherently large mechanical amplitude due to their very low mass. Here, we argue that the underutilized nanomechanical resonators made from multilayered two-dimensional (2D) materials are the better fit for this role because of their comparable electrostatic tunability and larger optomechanical responsivity. To show this, we first demonstrate the electrostatic tunability of mechanical modes of a multilayered nanomechanical resonator made from graphite. We also show that the optomechanical responsivity of multilayered devices will always be superior as compared to the few-layer devices. Finally, by using the multilayered model and comparing this device with the reported ones, we find that the electrostatic tunability of devices of intermediate thickness is not significantly lower than that of ultrathin ones. Together with the practicality in terms of fabrication ease and design predictability, we contend that multilayered 2D nanomechanical resonators are the optimal choice for the electromagnetic interface in integrated quantum systems.