Do you want to publish a course? Click here

First demonstration of early warning gravitational wave alerts

112   0   0.0 ( 0 )
 Added by Ryan Magee
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Gravitational-wave observations became commonplace in Advanced LIGO-Virgos recently concluded third observing run. 56 non-retracted candidates were identified and publicly announced in near real time. Gravitational waves from binary neutron star mergers, however, remain of special interest since they can be precursors to high-energy astrophysical phenomena like $gamma$-ray bursts and kilonovae. While late-time electromagnetic emissions provide important information about the astrophysical processes within, the prompt emission along with gravitational waves uniquely reveals the extreme matter and gravity during - and in the seconds following - merger. Rapid communication of source location and properties from the gravitational-wave data is crucial to facilitate multi-messenger follow-up of such sources. This is especially enabled if the partner facilities are forewarned via an early-warning (pre-merger) alert. Here we describe the commissioning and performance of such a low-latency infrastructure within LIGO-Virgo. We present results from an end-to-end mock data challenge that detects binary neutron star mergers and alerts partner facilities before merger. We set expectations for these alerts in future observing runs.



rate research

Read More

Binary neutron stars (BNSs) will spend $simeq 10$ -- 15 minutes in the band of Advanced LIGO and Virgo detectors at design sensitivity. Matched-filtering of gravitational-wave (GW) data could in principle accumulate enough signal-to-noise ratio (SNR) to identify a forthcoming event tens of seconds before the companions collide and merge. Here we report on the design and testing of an early warning gravitational-wave detection pipeline. Early warning alerts can be produced for sources that are at low enough redshift so that a large enough SNR accumulates $sim 10 - 60,rm s$ before merger. We find that about 7% (respectively, 49%) of the total detectable BNS mergers will be detected $60, rm s$ ($10, rm s$) before the merger. About 2% of the total detectable BNS mergers will be detected before merger and localized to within $100, rm text{deg}^2$ (90% credible interval). Coordinated observing by several wide-field telescopes could capture the event seconds before or after the merger. LIGO-Virgo detectors at design sensitivity could facilitate observing at least one event at the onset of merger.
A crucial component to maximizing the science gain from the multi-messenger follow-up of gravitational-wave (GW) signals from compact binary mergers is the prompt discovery of the electromagnetic counterpart. Ideally, the GW detection and localization must be reported early enough to allow for telescopes to slew to the location of the GW-event before the onset of the counterpart. However, the time available for early warning is limited by the short duration spent by the dominant ($ell = m = 2$) mode within the detectors frequency band. Nevertheless, we show that, including higher modes - which enter the detectors sensitivity band well before the dominant mode - in GW searches, can enable us to significantly improve the early warning ability for compact binaries with asymmetric masses (such as neutron-star-black-hole binaries). We investigate the reduction in the localization sky-area when the $ell = m = 3$ and $ell = m = 4$ modes are included in addition to the dominant mode, considering typical slew-times of electromagnetic telescopes ($30-60$ sec). We find that, in LIGOs projected O5 (Voyager) network with five GW detectors, some of the neutron-star-black-hole mergers, located at a distance of $40$ Mpc, can be localized to a few hundred sq. deg. $sim 45$ sec prior to the merger, corresponding to a reduction-factor of $3-4$ ($5-6$) in sky-area. For a third-generation network, we get gains of up to 1.5 minutes in early warning times for a localization area of $100$ sq. deg., even when the source is placed at $100$ Mpc.
In this paper, we report on the observational performance of the Swift Ultra-violet/Optical Telescope (UVOT) in response to the Gravitational Wave alerts announced by the Advanced Laser Interferometer Gravitational Wave Observatory and the Advanced Virgo detector during the O3 period. We provide the observational strategy for follow-up of GW alerts and provide an overview of the processing and analysis of candidate optical/UV sources. For the O3 period, we also provide a statistical overview and report on serendipitous sources discovered by Swift/UVOT. Swift followed 18 gravitational-wave candidate alerts, with UVOT observing a total of 424 deg^2. We found 27 sources that changed in magnitude at the 3 sigma level compared with archival u or g-band catalogued values. Swift/UVOT also followed up a further 13 sources reported by other facilities during the O3 period. Using catalogue information, we divided these 40 sources into five initial classifications: 11 candidate active galactic nuclei (AGN)/quasars, 3 Cataclysmic Variables (CVs), 9 supernovae, 11 unidentified sources that had archival photometry and 6 uncatalogued sources for which no archival photometry was available. We have no strong evidence to identify any of these transients as counterparts to the GW events. The 17 unclassified sources are likely a mix of AGN and a class of fast-evolving transient, and one source may be a CV.
Rapid localization of gravitational-wave events is important for the success of the multi-messenger observations. The forthcoming improvements and constructions of gravitational-wave detectors will enable detecting and localizing compact-binary coalescence events even before mergers, which is called early warning. The performance of early warning can be improved by considering modulation of gravitational wave signal amplitude due to the Earth rotation and the precession of a binary orbital plane caused by the misaligned spins of compact objects. In this paper, for the first time we estimate localization precision in the early warning quantitatively, taking into account an orbital precession. We find that a neutron star-black hole binary at $z=0.1$ can typically be localized to $100,mathrm{deg}^2$ and $10,mathrm{deg^2}$ at the time of $12$ -- $15 ,mathrm{minutes}$ and $50$ -- $300,mathrm{seconds}$ before merger, respectively, which cannot be achieved without the precession effect.
A gravitational-wave (GW) early-warning of a compact-binary coalescence event, with a sufficiently tight localisation skymap, would allow telescopes to point in the direction of the potential electromagnetic counterpart before its onset. This will enable astronomers to extract valuable information of the complex astrophysical phenomena triggered around the time of the merger. Use of higher-modes of gravitational radiation, in addition to the dominant mode typically used in templated real-time searches, was recently shown to produce significant improvements in early-warning times and skyarea localisations for a range of asymmetric-mass binaries. In this work, we perform a large-scale study to assess the benefits of this method for a population of compact binary merger observations. In particular, we inject 100,000 such signals in Gaussian noise, with component masses $m_1 in left[1, 60 right] M_{odot}$ and $m_2 in left [1, 3 right] M_{odot}$. We consider three scenarios involving ground-based detectors: the fifth (O5) observing run of the Advanced LIGO-Virgo-KAGRA network, its projected Voyager upgrade, as well as a proposed third generation (3G) network. We find that for fixed early warning times of $20-60$ seconds, the inclusion of the higher modes can provide localisation improvements of a factor of $gtrsim 2$ for up to $sim 60%$ ($70 %$) of the neutron star-black hole systems in the O5 (Voyager) scenario. Considering only those neutron star-black hole systems which can produce potential electromagnetic counterparts, such improvements in the localisation can be expected for $sim 5-35%$ $(20-50%)$ binaries in O5 (Voyager), although the localisation areas themselves depend on the distances. For the 3G scenario, a significant fraction of the events have time gains of a minute to several minutes, assuming fiducial target localisation areas of 100 to 1000 sq. deg.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا