No Arabic abstract
In this paper, we report on the observational performance of the Swift Ultra-violet/Optical Telescope (UVOT) in response to the Gravitational Wave alerts announced by the Advanced Laser Interferometer Gravitational Wave Observatory and the Advanced Virgo detector during the O3 period. We provide the observational strategy for follow-up of GW alerts and provide an overview of the processing and analysis of candidate optical/UV sources. For the O3 period, we also provide a statistical overview and report on serendipitous sources discovered by Swift/UVOT. Swift followed 18 gravitational-wave candidate alerts, with UVOT observing a total of 424 deg^2. We found 27 sources that changed in magnitude at the 3 sigma level compared with archival u or g-band catalogued values. Swift/UVOT also followed up a further 13 sources reported by other facilities during the O3 period. Using catalogue information, we divided these 40 sources into five initial classifications: 11 candidate active galactic nuclei (AGN)/quasars, 3 Cataclysmic Variables (CVs), 9 supernovae, 11 unidentified sources that had archival photometry and 6 uncatalogued sources for which no archival photometry was available. We have no strong evidence to identify any of these transients as counterparts to the GW events. The 17 unclassified sources are likely a mix of AGN and a class of fast-evolving transient, and one source may be a CV.
The Advanced LIGO observatory recently reported the first direct detection of gravitational waves (GW) which triggered ALIGO on 2015 September 14. We report on observations taken with the Swift satellite two days after the trigger. No new X-ray, optical, UV or hard X-ray sources were detected in our observations, which were focussed on nearby galaxies in the GW error region and covered 4.7 square degrees (~2% of the probability in the rapidly-available GW error region; 0.3% of the probability from the final GW error region, which was produced several months after the trigger). We describe the rapid Swift response and automated analysis of the X-ray telescope and UV/Optical Telescope data, and note the importance to electromagnetic follow up of early notification of the progenitor details inferred from GW analysis.
We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors and their candidate sky locations were observed by the Swift observatory. Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a blind injection challenge. With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments.
The second observational campaign of gravitational waves organized by the LIGO/Virgo Collaborations has led to several breakthroughs such as the detection of gravitational wave signals from merger systems involving black holes or neutrons stars. During O2,14 gravitational wave alerts were sent to the astronomical community with sky regions covering mostly over hundreds of square degrees. Among them, 6 have been finally confirmed as real astrophysical events. Since 2013, a new set of ground-based robotic telescopes called GWAC and its pathfinder mini-GWAC have been developed to contribute to the various challenges of themulti-messenger and time domain astronomy. The GWAC system is built up in the framework of the ground-segment system of the SVOM mission that will be devoted to the study of the multi-wavelength transient sky in the next decade. During O2, only the mini-GWAC telescopenetwork was fully operational. Due to the wide field of view and fast automatic follow-up capabilities of the mini-GWAC telescopes, they were well adapted to efficiently cover the sky localization areas of the gravitational wave event candidates. In this paper, we present the mini-GWAC pipeline we have set up to respond to the GW alerts and we report our optical follow-up observations of 8 GW alerts detected during the O2 run. Our observations provided the largest coverage of the GW localization areas in a short latency made by any optical facility. We found tens of optical transient candidates in our images, but none of those could be securely associated with any confirmed black hole-black hole merger event. Based on this first experience and the near future technical improvements of our network system, we will be more competitive to detect the optical counterparts from some gravitational wave events that will be detected during the upcoming O3 run, especially those emerging from binary neutron star mergers.
The Neil Gehrels Swift Observatory carried out prompt searches for gravitational wave (GW) events detected by the LIGO/Virgo Collaboration (LVC) during the second observing run (O2). Swift performed extensive tiling of eight LVC triggers, two of which had very low false-alarm rates (GW 170814 and the epochal GW 170817), indicating a high confidence of being astrophysical in origin; the latter was the first GW event to have an electromagnetic counterpart detected. In this paper we describe the follow-up performed during O2 and the results of our searches. No GW electromagnetic counterparts were detected; this result is expected, as GW 170817 remained the only astrophysical event containing at least one neutron star after LVCs later retraction of some events. A number of X-ray sources were detected, with the majority of identified sources being active galactic nuclei. We discuss the detection rate of transient X-ray sources and their implications in the O2 tiling searches. Finally, we describe the lessons learned during O2, and how these are being used to improve the swift follow-up of GW events. In particular, we simulate a population of GRB afterglows to evaluate our source ranking systems ability to differentiate them from unrelated and uncatalogued X-ray sources. We find that $approx$60-70% of afterglows whose jets are oriented towards Earth will be given high rank (i.e., interesting designation) by the completion of our second follow-up phase (assuming their location in the sky was observed), but that this fraction can be increased to nearly 100% by performing a third follow-up observation of sources exhibiting fading behavior.
The Neil Gehrels Swift Observatory followed up 18 gravitational wave (GW) triggers from the LIGO/Virgo collaboration during the O3 observing run in 2019/2020, performing approximately 6500 pointings in total. Of these events, four were finally classified (if real) as binary black hole (BH) triggers, six as binary neutron star (NS) events, two each of NSBH and Mass Gap triggers, one an unmodelled (Burst) trigger, and the remaining three were subsequently retracted. Thus far, four of these O3 triggers have been formally confirmed as real gravitational wave events. While no likely electromagnetic counterparts to any of these GW events have been identified in the X-ray data (to an average upper limit of 3.60 x 10^{-12} erg cm^{-2} s^{-1} over 0.3-10 keV), or at other wavelengths, we present a summary of all the Swift-XRT observations performed during O3, together with typical upper limits for each trigger observed. The majority of X-ray sources detected during O3 were previously uncatalogued; while some of these will be new (transient) sources, others are simply too faint to have been detected by earlier survey missions such as ROSAT. The all-sky survey currently being performed by eROSITA will be a very useful comparison for future observing runs, reducing the number of apparent candidate X-ray counterparts by up to 95 per cent.