Do you want to publish a course? Click here

Quantum Computers: Engines for Next Industrial Revolution

57   0   0.0 ( 0 )
 Added by Zhenghan Wang
 Publication date 2021
  fields Physics
and research's language is English
 Authors Zhenghan Wang




Ask ChatGPT about the research

Although the current information revolution is still unfolding, the next industrial revolution is already rearing its head. A second quantum revolution based on quantum technology will power this new industrial revolution with quantum computers as its engines. The development of quantum computing will turn quantum theory into quantum technology, hence release the power of quantum phenomena, and exponentially accelerate the progress of science and technology. Building a large-scale quantum computing is at the juncture of science and engineering. Even if large-scale quantum computers become reality, they cannot make the conventional computers obsolete soon. Building a large-scale quantum computer is a daunting complex engineering problem to integrate ultra-low temperature with room temperature and micro-world with macro-world. We have built hundreds of physical qubits already but are still working on logical and topological qubits. Since physical qubits cannot tolerate errors, they cannot be used to perform long precise calculations to solve practically useful problems yet.



rate research

Read More

109 - John Preskill 1997
The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per quantum gate is less than a certain critical value, the accuracy threshold. A quantum computer storing about 10^6 qubits, with a probability of error per quantum gate of order 10^{-6}, would be a formidable factoring engine. Even a smaller, less accurate quantum computer would be able to perform many useful tasks. (This paper is based on a talk presented at the ITP Conference on Quantum Coherence and Decoherence, 15-18 December 1996.)
Quantum simulation of quantum field theory is a flagship application of quantum computers that promises to deliver capabilities beyond classical computing. The realization of quantum advantage will require methods to accurately predict error scaling as a function of the resolution and parameters of the model that can be implemented efficiently on quantum hardware. In this paper, we address the representation of lattice bosonic fields in a discretized field amplitude basis, develop methods to predict error scaling, and present efficient qubit implementation strategies. A low-energy subspace of the bosonic Hilbert space, defined by a boson occupation cutoff, can be represented with exponentially good accuracy by a low-energy subspace of a finite size Hilbert space. The finite representation construction and the associated errors are directly related to the accuracy of the Nyquist-Shannon sampling and the Finite Fourier transforms of the boson number states in the field and the conjugate-field bases. We analyze the relation between the boson mass, the discretization parameters used for wavefunction sampling and the finite representation size. Numerical simulations of small size $Phi^4$ problems demonstrate that the boson mass optimizing the sampling of the ground state wavefunction is a good approximation to the optimal boson mass yielding the minimum low-energy subspace size. However, we find that accurate sampling of general wavefunctions does not necessarily result in accurate representation. We develop methods for validating and adjusting the discretization parameters to achieve more accurate simulations.
We show that the problem of communication in a quantum computer reduces to constructing reliable quantum channels by distributing high-fidelity EPR pairs. We develop analytical models of the latency, bandwidth, error rate and resource utilization of such channels, and show that 100s of qubits must be distributed to accommodate a single data communication. Next, we show that a grid of teleportation nodes forms a good substrate on which to distribute EPR pairs. We also explore the control requirements for such a network. Finally, we propose a specific routing architecture and simulate the communication patterns of the Quantum Fourier Transform to demonstrate the impact of resource contention.
This article presents recent progress in the theory of quantum measurement engines and discusses the implications of them for quantum interpretations and philosophical implications of the theory. Several new measurement engine designs are introduced and analyzed: We discuss a feedback based atom-and-piston engine that sharply associates all work with successful events and all quantum heat with the failed events, as well as an unconditional but coherent qubit engine that can attain perfect efficiency. Any quantum measurement of an observable that does not commute with the Hamiltonian will necessarily change the energy of the system. We discuss different ways to extract that energy, the efficiency and work production of that process.
Trapped-ion quantum information processors store information in atomic ions maintained in position in free space via electric fields. Quantum logic is enacted via manipulation of the ions internal and shared motional quantum states using optical and microwave signals. While trapped ions show great promise for quantum-enhanced computation, sensing, and communication, materials research is needed to design traps that allow for improved performance by means of integration of system components, including optics and electronics for ion-qubit control, while minimizing the near-ubiquitous electric-field noise produced by trap-electrode surfaces. In this review, we consider the materials requirements for such integrated systems, with a focus on problems that hinder current progress toward practical quantum computation. We give suggestions for how materials scientists and trapped-ion technologists can work together to develop materials-based integration and noise-mitigation strategies to enable the next generation of trapped-ion quantum computers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا