No Arabic abstract
We show that the problem of communication in a quantum computer reduces to constructing reliable quantum channels by distributing high-fidelity EPR pairs. We develop analytical models of the latency, bandwidth, error rate and resource utilization of such channels, and show that 100s of qubits must be distributed to accommodate a single data communication. Next, we show that a grid of teleportation nodes forms a good substrate on which to distribute EPR pairs. We also explore the control requirements for such a network. Finally, we propose a specific routing architecture and simulate the communication patterns of the Quantum Fourier Transform to demonstrate the impact of resource contention.
Fault-tolerant quantum computation promises to solve outstanding problems in quantum chemistry within the next decade. Realizing this promise requires scalable tools that allow users to translate descriptions of electronic structure problems to optimized quantum gate sequences executed on physical hardware, without requiring specialized quantum computing knowledge. To this end, we present a quantum chemistry library, under the open-source MIT license, that implements and enables straightforward use of state-of-art quantum simulation algorithms. The library is implemented in Q#, a language designed to express quantum algorithms at scale, and interfaces with NWChem, a leading electronic structure package. We define a standardized schema for this interface, Broombridge, that describes second-quantized Hamiltonians, along with metadata required for effective quantum simulation, such as trial wavefunction ansatzes. This schema is generated for arbitrary molecules by NWChem, conveniently accessible, for instance, through Docker containers and a recently developed web interface EMSL Arrows. We illustrate use of the library with various examples, including ground- and excited-state calculations for LiH, H$_{10}$, and C$_{20}$ with an active-space simplification, and automatically obtain resource estimates for classically intractable examples.
The emergence of coherent quantum feedback control (CQFC) as a new paradigm for precise manipulation of dynamics of complex quantum systems has led to the development of efficient theoretical modeling and simulation tools and opened avenues for new practical implementations. This work explores the applicability of the integrated silicon photonics platform for implementing scalable CQFC networks. If proven successful, on-chip implementations of these networks would provide scalable and efficient nanophotonic components for autonomous quantum information processing devices and ultra-low-power optical processing systems at telecommunications wavelengths. We analyze the strengths of the silicon photonics platform for CQFC applications and identify the key challenges to both the theoretical formalism and experimental implementations. In particular, we determine specific extensions to the theoretical CQFC framework (which was originally developed with bulk-optics implementations in mind), required to make it fully applicable to modeling of linear and nonlinear integrated optics networks. We also report the results of a preliminary experiment that studied the performance of an in situ controllable silicon nanophotonic network of two coupled cavities and analyze the properties of this device using the CQFC formalism.
We demonstrate entanglement distribution between two remote quantum nodes located 3 meters apart. This distribution involves the asynchronous preparation of two pairs of atomic memories and the coherent mapping of stored atomic states into light fields in an effective state of near maximum polarization entanglement. Entanglement is verified by way of the measured violation of a Bell inequality, and can be used for communication protocols such as quantum cryptography. The demonstrated quantum nodes and channels can be used as segments of a quantum repeater, providing an essential tool for robust long-distance quantum communication.
The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per quantum gate is less than a certain critical value, the accuracy threshold. A quantum computer storing about 10^6 qubits, with a probability of error per quantum gate of order 10^{-6}, would be a formidable factoring engine. Even a smaller, less accurate quantum computer would be able to perform many useful tasks. (This paper is based on a talk presented at the ITP Conference on Quantum Coherence and Decoherence, 15-18 December 1996.)
Quantum simulation of quantum field theory is a flagship application of quantum computers that promises to deliver capabilities beyond classical computing. The realization of quantum advantage will require methods to accurately predict error scaling as a function of the resolution and parameters of the model that can be implemented efficiently on quantum hardware. In this paper, we address the representation of lattice bosonic fields in a discretized field amplitude basis, develop methods to predict error scaling, and present efficient qubit implementation strategies. A low-energy subspace of the bosonic Hilbert space, defined by a boson occupation cutoff, can be represented with exponentially good accuracy by a low-energy subspace of a finite size Hilbert space. The finite representation construction and the associated errors are directly related to the accuracy of the Nyquist-Shannon sampling and the Finite Fourier transforms of the boson number states in the field and the conjugate-field bases. We analyze the relation between the boson mass, the discretization parameters used for wavefunction sampling and the finite representation size. Numerical simulations of small size $Phi^4$ problems demonstrate that the boson mass optimizing the sampling of the ground state wavefunction is a good approximation to the optimal boson mass yielding the minimum low-energy subspace size. However, we find that accurate sampling of general wavefunctions does not necessarily result in accurate representation. We develop methods for validating and adjusting the discretization parameters to achieve more accurate simulations.