No Arabic abstract
We build on the recently proposed EigenGame that views eigendecomposition as a competitive game. EigenGames updates are biased if computed using minibatches of data, which hinders convergence and more sophisticated parallelism in the stochastic setting. In this work, we propose an unbiased stochastic update that is asymptotically equivalent to EigenGame, enjoys greater parallelism allowing computation on datasets of larger sample sizes, and outperforms EigenGame in experiments. We present applications to finding the principal components of massive datasets and performing spectral clustering of graphs. We analyze and discuss our proposed update in the context of EigenGame and the shift in perspective from optimization to games.
The goal of few-shot learning is to learn a classifier that can recognize unseen classes from limited support data with labels. A common practice for this task is to train a model on the base set first and then transfer to novel classes through fine-tuning (Here fine-tuning procedure is defined as transferring knowledge from base to novel data, i.e. learning to transfer in few-shot scenario.) or meta-learning. However, as the base classes have no overlap to the novel set, simply transferring whole knowledge from base data is not an optimal solution since some knowledge in the base model may be biased or even harmful to the novel class. In this paper, we propose to transfer partial knowledge by freezing or fine-tuning particular layer(s) in the base model. Specifically, layers will be imposed different learning rates if they are chosen to be fine-tuned, to control the extent of preserved transferability. To determine which layers to be recast and what values of learning rates for them, we introduce an evolutionary search based method that is efficient to simultaneously locate the target layers and determine their individual learning rates. We conduct extensive experiments on CUB and mini-ImageNet to demonstrate the effectiveness of our proposed method. It achieves the state-of-the-art performance on both meta-learning and non-meta based frameworks. Furthermore, we extend our method to the conventional pre-training + fine-tuning paradigm and obtain consistent improvement.
Is deep learning over-hyped? Where are the case studies that compare state-of-the-art deep learners with simpler options? In response to this gap in the literature, this paper offers one case study on using deep learning to predict issue close time in Bugzilla. We report here that a SIMPLE extension to a decades-old feedforward neural network works better than the more recent, and more elaborate, long-short term memory deep learning (which are currently popular in the SE literature). SIMPLE is a combination of a fast feedforward network and a hyper-parameter optimizer. SIMPLE runs in 3 seconds while the newer algorithms take 6 hours to terminate. Since it runs so fast, it is more amenable to being tuned by our optimizer. This paper reports results seen after running SIMPLE on issue close time data from 45,364 issues raised in Chromium, Eclipse, and Firefox projects from January 2010 to March 2016. In our experiments, this SIMPLEr tuning approach achieves significantly better predictors for issue close time than the more complex deep learner. These better and SIMPLEr results can be generated 2,700 times faster than if using a state-of-the-art deep learner. From this result, we make two conclusions. Firstly, for predicting issue close time, we would recommend SIMPLE over complex deep learners. Secondly, before analysts try very sophisticated (but very slow) algorithms, they might achieve better results, much sooner, by applying hyper-parameter optimization to simple (but very fast) algorithms.
As an essential ingredient of modern deep learning, attention mechanism, especially self-attention, plays a vital role in the global correlation discovery. However, is hand-crafted attention irreplaceable when modeling the global context? Our intriguing finding is that self-attention is not better than the matrix decomposition (MD) model developed 20 years ago regarding the performance and computational cost for encoding the long-distance dependencies. We model the global context issue as a low-rank recovery problem and show that its optimization algorithms can help design global information blocks. This paper then proposes a series of Hamburgers, in which we employ the optimization algorithms for solving MDs to factorize the input representations into sub-matrices and reconstruct a low-rank embedding. Hamburgers with different MDs can perform favorably against the popular global context module self-attention when carefully coping with gradients back-propagated through MDs. Comprehensive experiments are conducted in the vision tasks where it is crucial to learn the global context, including semantic segmentation and image generation, demonstrating significant improvements over self-attention and its variants.
Random forests (RF) and deep networks (DN) are two of the most popular machine learning methods in the current scientific literature and yield differing levels of performance on different data modalities. We wish to further explore and establish the conditions and domains in which each approach excels, particularly in the context of sample size and feature dimension. To address these issues, we tested the performance of these approaches across tabular, image, and audio settings using varying model parameters and architectures. Our focus is on datasets with at most 10,000 samples, which represent a large fraction of scientific and biomedical datasets. In general, we found RF to excel at tabular and structured data (image and audio) with small sample sizes, whereas DN performed better on structured data with larger sample sizes. Although we plan to continue updating this technical report in the coming months, we believe the current preliminary results may be of interest to others.
We study local SGD (also known as parallel SGD and federated averaging), a natural and frequently used stochastic distributed optimization method. Its theoretical foundations are currently lacking and we highlight how all existing error guarantees in the convex setting are dominated by a simple baseline, minibatch SGD. (1) For quadratic objectives we prove that local SGD strictly dominates minibatch SGD and that accelerated local SGD is minimax optimal for quadratics; (2) For general convex objectives we provide the first guarantee that at least sometimes improves over minibatch SGD; (3) We show that indeed local SGD does not dominate minibatch SGD by presenting a lower bound on the performance of local SGD that is worse than the minibatch SGD guarantee.