Do you want to publish a course? Click here

Is Local SGD Better than Minibatch SGD?

303   0   0.0 ( 0 )
 Added by Blake Woodworth
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We study local SGD (also known as parallel SGD and federated averaging), a natural and frequently used stochastic distributed optimization method. Its theoretical foundations are currently lacking and we highlight how all existing error guarantees in the convex setting are dominated by a simple baseline, minibatch SGD. (1) For quadratic objectives we prove that local SGD strictly dominates minibatch SGD and that accelerated local SGD is minimax optimal for quadratics; (2) For general convex objectives we provide the first guarantee that at least sometimes improves over minibatch SGD; (3) We show that indeed local SGD does not dominate minibatch SGD by presenting a lower bound on the performance of local SGD that is worse than the minibatch SGD guarantee.



rate research

Read More

We analyze Local SGD (aka parallel or federated SGD) and Minibatch SGD in the heterogeneous distributed setting, where each machine has access to stochastic gradient estimates for a different, machine-specific, convex objective; the goal is to optimize w.r.t. the average objective; and machines can only communicate intermittently. We argue that, (i) Minibatch SGD (even without acceleration) dominates all existing analysis of Local SGD in this setting, (ii) accelerated Minibatch SGD is optimal when the heterogeneity is high, and (iii) present the first upper bound for Local SGD that improves over Minibatch SGD in a non-homogeneous regime.
92 - Pan Zhou , Jiashi Feng , Chao Ma 2020
It is not clear yet why ADAM-alike adaptive gradient algorithms suffer from worse generalization performance than SGD despite their faster training speed. This work aims to provide understandings on this generalization gap by analyzing their local convergence behaviors. Specifically, we observe the heavy tails of gradient noise in these algorithms. This motivates us to analyze these algorithms through their Levy-driven stochastic differential equations (SDEs) because of the similar convergence behaviors of an algorithm and its SDE. Then we establish the escaping time of these SDEs from a local basin. The result shows that (1) the escaping time of both SGD and ADAM~depends on the Radon measure of the basin positively and the heaviness of gradient noise negatively; (2) for the same basin, SGD enjoys smaller escaping time than ADAM, mainly because (a) the geometry adaptation in ADAM~via adaptively scaling each gradient coordinate well diminishes the anisotropic structure in gradient noise and results in larger Radon measure of a basin; (b) the exponential gradient average in ADAM~smooths its gradient and leads to lighter gradient noise tails than SGD. So SGD is more locally unstable than ADAM~at sharp minima defined as the minima whose local basins have small Radon measure, and can better escape from them to flatter ones with larger Radon measure. As flat minima here which often refer to the minima at flat or asymmetric basins/valleys often generalize better than sharp ones~cite{keskar2016large,he2019asymmetric}, our result explains the better generalization performance of SGD over ADAM. Finally, experimental results confirm our heavy-tailed gradient noise assumption and theoretical affirmation.
Stochastic Gradient Descent (SGD) based methods have been widely used for training large-scale machine learning models that also generalize well in practice. Several explanations have been offered for this generalization performance, a prominent one being algorithmic stability [18]. However, there are no known examples of smooth loss functions for which the analysis can be shown to be tight. Furthermore, apart from the properties of the loss function, data distribution has also been shown to be an important factor in generalization performance. This raises the question: is the stability analysis of [18] tight for smooth functions, and if not, for what kind of loss functions and data distributions can the stability analysis be improved? In this paper we first settle open questions regarding tightness of bounds in the data-independent setting: we show that for general datasets, the existing analysis for convex and strongly-convex loss functions is tight, but it can be improved for non-convex loss functions. Next, we give a novel and improved data-dependent bounds: we show stability upper bounds for a large class of convex regularized loss functions, with negligible regularization parameters, and improve existing data-dependent bounds in the non-convex setting. We hope that our results will initiate further efforts to better understand the data-dependent setting under non-convex loss functions, leading to an improved understanding of the generalization abilities of deep networks.
There is an increasing realization that algorithmic inductive biases are central in preventing overfitting; empirically, we often see a benign overfitting phenomenon in overparameterized settings for natural learning algorithms, such as stochastic gradient descent (SGD), where little to no explicit regularization has been employed. This work considers this issue in arguably the most basic setting: constant-stepsize SGD (with iterate averaging) for linear regression in the overparameterized regime. Our main result provides a sharp excess risk bound, stated in terms of the full eigenspectrum of the data covariance matrix, that reveals a bias-variance decomposition characterizing when generalization is possible: (i) the variance bound is characterized in terms of an effective dimension (specific for SGD) and (ii) the bias bound provides a sharp geometric characterization in terms of the location of the initial iterate (and how it aligns with the data covariance matrix). We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares (minimum-norm interpolation) and ridge regression.
The ability to scale distributed optimization to large node counts has been one of the main enablers of recent progress in machine learning. To this end, several techniques have been explored, such as asynchronous, decentralized, or quantized communication--which significantly reduce the cost of synchronization, and the ability for nodes to perform several local model updates before communicating--which reduces the frequency of synchronization. In this paper, we show that these techniques, which have so far been considered independently, can be jointly leveraged to minimize distribution cost for training neural network models via stochastic gradient descent (SGD). We consider a setting with minimal coordination: we have a large number of nodes on a communication graph, each with a local subset of data, performing independent SGD updates onto their local models. After some number of local updates, each node chooses an interaction partner uniformly at random from its neighbors, and averages a possibly quantized version of its local model with the neighbors model. Our first contribution is in proving that, even under such a relaxed setting, SGD can still be guaranteed to converge under standard assumptions. The proof is based on a new connection with parallel load-balancing processes, and improves existing techniques by jointly handling decentralization, asynchrony, quantization, and local updates, and by bounding their impact. On the practical side, we implement variants of our algorithm and deploy them onto distributed environments, and show that they can successfully converge and scale for large-scale image classification and translation tasks, matching or even slightly improving the accuracy of previous methods.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا