No Arabic abstract
We investigate the problem of classifying - from a single image - the level of content in a cup or a drinking glass. This problem is made challenging by several ambiguities caused by transparencies, shape variations and partial occlusions, and by the availability of only small training datasets. In this paper, we tackle this problem with an appropriate strategy for transfer learning. Specifically, we use adversarial training in a generic source dataset and then refine the training with a task-specific dataset. We also discuss and experimentally evaluate several training strategies and their combination on a range of container types of the CORSMAL Containers Manipulation dataset. We show that transfer learning with adversarial training in the source domain consistently improves the classification accuracy on the test set and limits the overfitting of the classifier to specific features of the training data.
Research into adversarial examples (AE) has developed rapidly, yet static adversarial patches are still the main technique for conducting attacks in the real world, despite being obvious, semi-permanent and unmodifiable once deployed. In this paper, we propose Short-Lived Adversarial Perturbations (SLAP), a novel technique that allows adversaries to realize physically robust real-world AE by using a light projector. Attackers can project a specifically crafted adversarial perturbation onto a real-world object, transforming it into an AE. This allows the adversary greater control over the attack compared to adversarial patches: (i) projections can be dynamically turned on and off or modified at will, (ii) projections do not suffer from the locality constraint imposed by patches, making them harder to detect. We study the feasibility of SLAP in the self-driving scenario, targeting both object detector and traffic sign recognition tasks, focusing on the detection of stop signs. We conduct experiments in a variety of ambient light conditions, including outdoors, showing how in non-bright settings the proposed method generates AE that are extremely robust, causing misclassifications on state-of-the-art networks with up to 99% success rate for a variety of angles and distances. We also demostrate that SLAP-generated AE do not present detectable behaviours seen in adversarial patches and therefore bypass SentiNet, a physical AE detection method. We evaluate other defences including an adaptive defender using adversarial learning which is able to thwart the attack effectiveness up to 80% even in favourable attacker conditions.
Data in the real world tends to exhibit a long-tailed label distribution, which poses great challenges for neural networks in classification. Existing methods tackle this problem mainly from the coarse-grained class level, ignoring the difference among instances, e.g., hard samples vs. easy samples. In this paper, we revisit the long-tailed problem from the instance level and propose two instance-level components to improve long-tailed classification. The first one is an Adaptive Logit Adjustment (ALA) loss, which applies an adaptive adjusting term to the logit. Different from the adjusting terms in existing methods that are class-dependent and only focus on tail classes, we carefully design an instance-specific term and add it on the class-dependent term to make the network pay more attention to not only tailed class, but more importantly hard samples. The second one is a Mixture-of-Experts (MoE) network, which contains a multi-expert module and an instance-aware routing module. The routing module is designed to dynamically integrate the results of multiple experts according to each input instance, and is trained jointly with the experts network in an end-to-end manner.Extensive experiment results show that our method outperforms the state-of-the-art methods by 1% to 5% on common long-tailed benchmarks including ImageNet-LT and iNaturalist.
Training generative adversarial networks (GAN) using too little data typically leads to discriminator overfitting, causing training to diverge. We propose an adaptive discriminator augmentation mechanism that significantly stabilizes training in limited data regimes. The approach does not require changes to loss functions or network architectures, and is applicable both when training from scratch and when fine-tuning an existing GAN on another dataset. We demonstrate, on several datasets, that good results are now possible using only a few thousand training images, often matching StyleGAN2 results with an order of magnitude fewer images. We expect this to open up new application domains for GANs. We also find that the widely used CIFAR-10 is, in fact, a limited data benchmark, and improve the record FID from 5.59 to 2.42.
Though CNNs have achieved the state-of-the-art performance on various vision tasks, they are vulnerable to adversarial examples --- crafted by adding human-imperceptible perturbations to clean images. However, most of the existing adversarial attacks only achieve relatively low success rates under the challenging black-box setting, where the attackers have no knowledge of the model structure and parameters. To this end, we propose to improve the transferability of adversarial examples by creating diverse input patterns. Instead of only using the original images to generate adversarial examples, our method applies random transformations to the input images at each iteration. Extensive experiments on ImageNet show that the proposed attack method can generate adversarial examples that transfer much better to different networks than existing baselines. By evaluating our method against top defense solutions and official baselines from NIPS 2017 adversarial competition, the enhanced attack reaches an average success rate of 73.0%, which outperforms the top-1 attack submission in the NIPS competition by a large margin of 6.6%. We hope that our proposed attack strategy can serve as a strong benchmark baseline for evaluating the robustness of networks to adversaries and the effectiveness of different defense methods in the future. Code is available at https://github.com/cihangxie/DI-2-FGSM.
In this paper, we propose a novel conditional-generative-adversarial-nets-based image captioning framework as an extension of traditional reinforcement-learning (RL)-based encoder-decoder architecture. To deal with the inconsistent evaluation problem among different objective language metrics, we are motivated to design some discriminator networks to automatically and progressively determine whether generated caption is human described or machine generated. Two kinds of discriminator architectures (CNN and RNN-based structures) are introduced since each has its own advantages. The proposed algorithm is generic so that it can enhance any existing RL-based image captioning framework and we show that the conventional RL training method is just a special case of our approach. Empirically, we show consistent improvements over all language evaluation metrics for different state-of-the-art image captioning models. In addition, the well-trained discriminators can also be viewed as objective image captioning evaluators