No Arabic abstract
We study the disorder-induced phase transition of higher-order Weyl semimetals (HOWSMs) and the fate of the topological features of disordered HOWSMs. We obtain a global phase diagram of HOWSMs according to the scaling theory of Anderson localization. Specifically, a phase transition from the Weyl semimetal (WSM) to the HOWSM is uncovered, distinguishing the disordered HOWSMs from the traditional WSMs. Further, we confirm the robustness of Weyl-nodes for HOWSMs. Interestingly, the unique topological properties of HOWSMs show different behaviors: (i) the quantized quadrupole moment and the corresponding quantized charge of hinge states are fragile to weak disorder; (ii) the hinge states show moderate stability which enables the feasibility in experimental observation. Our study deepens the understanding of the topological nature of HOWSMs and paves a possible way to the characterization of such a phase in experiments.
A higher-order topological insulator is a new concept of topological states of matter, which is characterized by the emergent boundary states whose dimensionality is lower by more than two compared with that of the bulk, and draws a considerable interest. Yet, its robustness against disorders is still unclear. Here we investigate a phase diagram of higher-order topological insulator phases in a breathing kagome model in the presence of disorders, by using a state-of-the-art machine learning technique. We find that the corner states survive against the finite strength of disorder potential as long as the energy gap is not closed, indicating the stability of the higher-order topological phases against the disorders.
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum space in which both the Chern number and a higher order topological invariant change. As a proof of concept we use a model of stacked higher order quadrupole insulators to identify three types of WSM phases: $1st$-order, $2nd$-order, and hybrid-order. The model can also realize type-II and hybrid-tilt WSMs with various surface and hinge arcs. Moreover, we show that a measurement of charge density in the presence of magnetic flux can help identify some classes of $2nd$ order WSMs. Remarkably, we find that coupling a $2nd$-order Weyl phase with a conventional $1st$-order one can lead to a hybrid-order topological insulator having coexisting surface cones and flat hinge arcs that are independent and not attached to each other. Finally, we show that periodic driving can be utilized as a way for generating HOWSMs. Our results are relevant to metamaterials as well as various phases of Cd$_3$As$_2$, KMgBi, and rutile-structure PtO$_2$ that have been predicted to realize higher order Dirac semimetals.
Higher-order topology yields intriguing multidimensional topological phenomena, while Weyl semimetals have unconventional properties such as chiral anomaly. However, so far, Weyl physics remain disconnected with higher-order topology. Here, we report the theoretical discovery of higher-order Weyl points and thereby the establishment of such an important connection. We demonstrate that higher-order Weyl points can emerge in chiral materials such as chiral tetragonal crystals as the intermediate phase between the conventional Weyl semimetal and 3D higher-order topological phases. Higher-order Weyl semimetals manifest themselves uniquely by exhibiting concurrent chiral Fermi-arc surface states, topological hinge states, and the momentum-dependent fractional hinge charge, revealing a novel class of higher-order topological phases.
We study the dynamics of Dirac and Weyl electrons in disordered point-node semimetals. The ballistic feature of the transport is demonstrated by simulating the wave-packet dynamics on lattice models. We show that the ballistic transport survives under a considerable strength of disorder up to the semimetal-metal transition point, which indicates the robustness of point-node semimetals against disorder. We also visualize the robustness of the nodal points and linear dispersion under broken translational symmetry. The speed of the wave packets slows down with increasing disorder strength, and vanishes toward the critical strength of disorder, hence becoming the order parameter. The obtained critical behavior of the speed of the wave packets is consistent with that predicted by the scaling conjecture.
For first-order topological semimetals, non-Hermitian perturbations can drive the Weyl nodes into Weyl exceptional rings having multiple topological structures and no Hermitian counterparts. Recently, it was discovered that higher-order Weyl semimetals, as a novel class of higher-order topological phases, can uniquely exhibit coexisting surface and hinge Fermi arcs. However, non-Hermitian higher-order topological semimetals have not yet been explored. Here, we identify a new type of topological semimetals, i.e, a higher-order topological semimetal with Weyl exceptional rings. In such a semimetal, these rings are characterized by both a spectral winding number and a Chern number. Moreover, the higher-order Weyl-exceptional-ring semimetal supports both surface and hinge Fermi-arc states, which are bounded by the projection of the Weyl exceptional rings onto the surface and hinge, respectively. Noticeably, the dissipative terms can cause the coupling of two exceptional rings with opposite topological charges, so as to induce topological phase transitions. Our studies open new avenues for exploring novel higher-order topological semimetals in non-Hermitian systems.