Do you want to publish a course? Click here

Higher-order Weyl Semimetals

158   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum space in which both the Chern number and a higher order topological invariant change. As a proof of concept we use a model of stacked higher order quadrupole insulators to identify three types of WSM phases: $1st$-order, $2nd$-order, and hybrid-order. The model can also realize type-II and hybrid-tilt WSMs with various surface and hinge arcs. Moreover, we show that a measurement of charge density in the presence of magnetic flux can help identify some classes of $2nd$ order WSMs. Remarkably, we find that coupling a $2nd$-order Weyl phase with a conventional $1st$-order one can lead to a hybrid-order topological insulator having coexisting surface cones and flat hinge arcs that are independent and not attached to each other. Finally, we show that periodic driving can be utilized as a way for generating HOWSMs. Our results are relevant to metamaterials as well as various phases of Cd$_3$As$_2$, KMgBi, and rutile-structure PtO$_2$ that have been predicted to realize higher order Dirac semimetals.



rate research

Read More

We study non-Hermitian higher-order Weyl semimetals (NHHOWSMs) possessing real spectra and having inversion $mathcal{I}$ ($mathcal{I}$-NHHOWSM) or time-reversal symmetry $mathcal{T}$ ($mathcal{T}$-NHHOWSM). When the reality of bulk spectra is lost, the NHHOWSMs exhibit various configurations of surface Fermi Arcs (FAs) and Exceptional Fermi Rings (EFRs), providing a setup to investigate them on an equal footing. The EFRs only appear in the region between 2nd-order WNs. We also discover Weyl nodes originating from non-Hermicity, called non-Hermitian Weyl nodes (NHWNs). Remarkably, we find T-NHHOWSMs which host only 2nd-order NHWNs, having both surface and hinge FAs protected by the quantized biorthogonal Chern number and quadrupole moment, respectively. We call this intrinsically non-Hermitian phase exceptional HOWSM. In contrast to ordinary WNs, the NHWNs can instantly deform to line nodes, forming a monopole comet. The NHWNs also show exceptional tilt-rigidity, which is a strong resistance towards titling due to attachment to exceptional structures. This phenomenon can be a promising experimental knob. Finally, we reveal the exceptional stability of FAs called exceptional helicity. Surface FAs having opposite chirality can live on the same surface without gapping out each other due to the complex nature of the spectrum. Our work motivates an immediate experimental realization of NHHOWSMs.
In this article we study 3D non-Hermitian higher-order Dirac semimetals (NHHODSMs). Our focus is on $C_4$-symmetric non-Hermitian systems where we investigate inversion ($mathcal{I}$) or time-reversal ($mathcal{T}$) symmetric models of NHHODSMs having real bulk spectra. We show that they exhibit the striking property that the bulk and surfaces are anti-PT and PT symmetric, respectively, and so belong to two different topological classes realizing a novel non-Hermitian topological phase which we call a emph{hybrid-PT topological phases}. Interestingly, while the bulk spectrum is still fully real, we find that exceptional Fermi-rings (EFRs) appear connecting the two Dirac nodes on the surface. This provides a route to probe and utilize both the bulk Dirac physics and exceptional rings/points on equal footing. Moreover, particularly for $mathcal{T}$-NHHODSMs, we also find real hinge-arcs connecting the surface EFRs. We show that this higher-order topology can be characterized using a biorthogonal real-space formula of the quadrupole moment. Furthermore, by applying Hermitian $C_4$-symmetric perturbations, we discover various novel phases, particularly: (i) an intrinsic $mathcal{I}$-NHHODSM having hinge arcs and gapped surfaces, and (ii) a novel $mathcal{T}$-symmetric skin-topological HODSM which possesses both topological and skin hinge modes. The interplay between non-Hermition and higher-order topology in this work paves the way toward uncovering rich phenomena and hybrid functionality that can be readily realized in experiment.
We report intertwined Weyl phases, which come from superposing topological phases by crystalline symmetry. In the intertwined Weyl phases, an unconventional Weyl phase where Weyl points possess a higher charge (monopole charge>1) due to rotation symmetry, and a higher-order topological phase enforced by rotation symmetry, are superposed. The two phases are no longer separable, but intertwine with each other, resulting in the novel phase. Remarkably, the intertwining leads to a prominent characteristic feature of the intertwined Weyl phases: $textit{the change of Fermi-arc topology}$ in a periodic pattern, i.e., the way how Fermi arcs connect to Weyl points changes drastically with respect to surface orientation, which exhibits a periodic pattern. Such a phenomenon is absent in any individual phase alone. Moreover, we elaborate on how to emulate the intertwined double-Weyl phase in cold atoms. Our theory is quite promising for generating new topological phases based on existing ones.
Dirac and Weyl semimetals both exhibit arc-like surface states. However, whereas the surface Fermi arcs in Weyl semimetals are topological consequences of the Weyl points themselves, the surface Fermi arcs in Dirac semimetals are not directly related to the bulk Dirac points, raising the question of whether there exists a topological bulk-boundary correspondence for Dirac semimetals. In this work, we discover that strong and fragile topological Dirac semimetals exhibit 1D higher-order hinge Fermi arcs (HOFAs) as universal, direct consequences of their bulk 3D Dirac points. To predict HOFAs coexisting with topological surface states in solid-state Dirac semimetals, we introduce and layer a spinful model of an $s-d$-hybridized quadrupole insulator (QI). We develop a rigorous nested Jackiw-Rebbi formulation of QIs and HOFA states. Employing $ab initio$ calculations, we demonstrate HOFAs in both the room- ($alpha$) and intermediate-temperature ($alpha$) phases of Cd$_{3}$As$_2$, KMgBi, and rutile-structure ($beta$-) PtO$_2$.
We present how to detect type-$1$ Weyl nodes in a material by inelastic neutron scattering. Such an experiment first of all allows one to determine the dispersion of the Weyl fermions. We extend the reasoning to produce a quantitative test of the Weyl equation taking into account realistic anisotropic properties. These anisotropies are mostly contained in the form of the emergent magnetic moment of the excitations, which determines how they couple to the neutron. Although there are many material parameters, we find several quantitative predictions that are universal and demonstrate that the excitations are described by solutions to the Weyl equation. The realistic, anisotropic coupling between electrons and neutrons implies that even fully unpolarized neutrons can reveal the spin-momentum locking of the Weyl fermions because the neutrons will couple to some components of the Weyl fermion pseudospin more strongly. On the other hand, in an experiment with polarized neutrons, the scattered neutron beam remains fully polarized in a direction that varies as a function of momentum transfer (within the range of validity of the Weyl equation). This allows measurement of the chirality of Weyl fermions for inversion symmetric nodes. Furthermore, we estimate that the scattering rate may be large enough for such experiments to be practical; in particular, the magnetic moment may be larger than the ordinary Bohr magneton, compensating for a small density of states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا