No Arabic abstract
We study the transverse self-structuring of a cloud of cold atoms with effective atomic interactions mediated by a coherent driving beam retro-reflected by means of a single mirror. The resulting self-structuring due to optomechanical forces is much richer than that of an effective-Kerr medium, displaying hexagonal, stripe and honeycomb phases depending on the interaction strength parametrized by the linear susceptibility. Phase domains are described by real Ginzburg-Landau amplitude equations. In the stripe phase the system recovers inversion symmetry. Moreover, the subcritical character of the honeycomb phase allows for light-density feedback solitons functioning as self-sustained dark atomic traps with motion controlled by phase gradients in the driving beam.
This article discusses self-organization in cold atoms via light-mediated interactions induced by feedback from a single retro-reflecting mirror. Diffractive dephasing between the pump beam and the spontaneous sidebands selects the lattice period. Spontaneous breaking of the rotational and translational symmetry occur in the 2D plane transverse to the pump. We elucidate how diffractive ripples couple sites on the self-induced atomic lattice. The nonlinear phase shift of the atomic cloud imprinted onto the optical beam is the parameter determining coupling strength. The interaction can be tailored to operate either on external degrees of freedom leading to atomic crystallization for thermal atoms and supersolids for a quantum degenerate gas, or on internal degrees of freedom like populations of the excited state or Zeeman sublevels. Using the light polarization degrees of freedom on the Poincar{e} sphere (helicity and polarization direction), specific irreducible tensor components of the atomic Zeeman states can be coupled leading to spontaneous magnetic ordering of states of dipolar and quadrupolar nature. The requirements for critical interaction strength are compared for the different situations. Connections and extensions to longitudinally pumped cavities, counterpropagating beam schemes and the CARL instability are discussed.
We report on highly effective trapping of cold atoms by a new method for a stable single optical trap in the near-optical resonant regime. An optical trap with the near-optical resonance condition consists of not only the dipole but also the radiative forces, while a trap using a far-off resonance dominates only the dipole force. We estimate a near-optical resonant trap for ultracold rubidium atoms in the range between -0.373 and -2.23 THz from the resonance. The time dependence of the trapped atoms indicates some difference of the stable center-of-mass positions in the near-optical resonant trap, and also indicates that the differences are caused by the change of the equilibrium condition of the optical dipole and radiative forces. A stable position depends only on laser detuning due to the change in the radiative force; however, the position is ineffective against the change in the laser intensity, which results in a change in the radiative force.
We demonstrate single-shot imaging and narrow-line cooling of individual alkaline earth atoms in optical tweezers; specifically, strontium-88 atoms trapped in $515.2~text{nm}$ light. We achieve high-fidelity single-atom-resolved imaging by detecting photons from the broad singlet transition while cooling on the narrow intercombination line, and extend this technique to highly uniform two-dimensional arrays of $121$ tweezers. Cooling during imaging is based on a previously unobserved narrow-line Sisyphus mechanism, which we predict to be applicable in a wide variety of experimental situations. Further, we demonstrate optically resolved sideband cooling of a single atom close to the motional ground state of a tweezer. Precise determination of losses during imaging indicate that the branching ratio from $^1$P$_1$ to $^1$D$_2$ is more than a factor of two larger than commonly quoted, a discrepancy also predicted by our ab initio calculations. We also measure the differential polarizability of the intercombination line in a $515.2~text{nm}$ tweezer and achieve a magic-trapping configuration by tuning the tweezer polarization from linear to elliptical. We present calculations, in agreement with our results, which predict a magic crossing for linear polarization at $520(2)~text{nm}$ and a crossing independent of polarization at 500.65(50)nm. Our results pave the way for a wide range of novel experimental avenues based on individually controlled alkaline earth atoms in tweezers -- from fundamental experiments in atomic physics to quantum computing, simulation, and metrology implementations.
We formulate a Bardeen-Cooper-Schriffer (BCS) theory of quasiparticles in a degenerate Fermi gas strongly coupled to photons in a optical cavity. The elementary photonic excitations of the system are cavity polaritons, which consist of a cavity photon and an excitation of an atom within the Fermi sea. The excitation of the atom out of the Fermi sea leaves behind a hole, which together results in a loosely bound Cooper pair, allowing for the system to be written by a BCS wavefunction. As the density of the excitations is increased, the excited atom and hole become more strongly bound, crossing over into the molecular regime. This thus realizes an alternative BCS to BEC crossover scenario, where the participating species are quasiparticle excitations in a Fermi sea consisting of excited atoms and holes.
We theoretically analyze superradiant emission of light from a cold atomic gas, when mechanical effects of photon-atom interactions are considered. The atoms are confined within a standing-wave resonator and an atomic metastable dipolar transition couples to a cavity mode. The atomic dipole is incoherently pumped in the parameter regime that would correspond to stationary superradiance in absence of inhomogeneous broadening. Starting from the master equation for cavity field and atomic degrees of freedom we derive a mean-field model that allows us to determine a threshold temperature, above which thermal fluctuations suppress superradiant emission. We then analyze the dynamics of superradiant emission when the motion is described by a mean-field model. In the semiclassical regime and below the threshold temperature we observe that the emitted light can be either coherent or chaotic, depending on the incoherent pump rate. We then analyze superradiant emission from an ideal Bose gas at zero temperature when the superradiant decay rate $Lambda$ is of the order of the recoil frequency $omega_R$. We show that the quantized exchange of mechanical energy between the atoms and the field gives rise to a threshold, $Lambda_c$, below which superradiant emission is damped down to zero. When $Lambda>Lambda_c$ superradiant emission is accompanied by the formation of matter-wave gratings diffracting the emitted photons. The stability of these gratings depends on the incoherent pump rate $w$ with respect to a second threshold value $w_c$. For $w>w_c$ the gratings are stable and the system achieves stationary superradiance. Below this second threshold the coupled dynamics becomes chaotic. We characterize the dynamics across these two thresholds and show that the three phases we predict (incoherent, coherent, chaotic) can be revealed via the coherence properties of the light at the cavity output.