No Arabic abstract
We theoretically analyze superradiant emission of light from a cold atomic gas, when mechanical effects of photon-atom interactions are considered. The atoms are confined within a standing-wave resonator and an atomic metastable dipolar transition couples to a cavity mode. The atomic dipole is incoherently pumped in the parameter regime that would correspond to stationary superradiance in absence of inhomogeneous broadening. Starting from the master equation for cavity field and atomic degrees of freedom we derive a mean-field model that allows us to determine a threshold temperature, above which thermal fluctuations suppress superradiant emission. We then analyze the dynamics of superradiant emission when the motion is described by a mean-field model. In the semiclassical regime and below the threshold temperature we observe that the emitted light can be either coherent or chaotic, depending on the incoherent pump rate. We then analyze superradiant emission from an ideal Bose gas at zero temperature when the superradiant decay rate $Lambda$ is of the order of the recoil frequency $omega_R$. We show that the quantized exchange of mechanical energy between the atoms and the field gives rise to a threshold, $Lambda_c$, below which superradiant emission is damped down to zero. When $Lambda>Lambda_c$ superradiant emission is accompanied by the formation of matter-wave gratings diffracting the emitted photons. The stability of these gratings depends on the incoherent pump rate $w$ with respect to a second threshold value $w_c$. For $w>w_c$ the gratings are stable and the system achieves stationary superradiance. Below this second threshold the coupled dynamics becomes chaotic. We characterize the dynamics across these two thresholds and show that the three phases we predict (incoherent, coherent, chaotic) can be revealed via the coherence properties of the light at the cavity output.
We study the exact solution for two atomic particles in an optical lattice interacting via a Feshbach resonance. The analysis includes the influence of all higher bands, as well as the proper renormalization of molecular energy in the closed channel. Using an expansion in Bloch waves, we show that the problem reduces to a simple matrix equation, which can be solved numerically very efficient. This exact solution allows for the precise determination of the parameters in the Hubbard model and the two-particle bound state energy. We identify the regime, where a single band Hubbard model fails to describe the scattering of the atoms as well as the bound states.
We consider response function and spin evolution in spin-orbit coupled cold atomic gases in a synthetic gauge magnetic field influencing solely the orbital motion of atoms. We demonstrate that various regimes of spin-orbit coupling strength, magnetic field, and disorder can be treated within a single approach based on the representation of atomic motion in terms of auxiliary collective classical trajectories. Our approach allows for a unified description of fermionic and bosonic gases.
Cold atoms, driven by a laser and simultaneously coupled to the quantum field of an optical resonator, can self-organize in periodic structures. These structures are supported by the optical lattice, which emerges from the laser light they scatter into the cavity mode, and form when the laser intensity exceeds a threshold value. We study theoretically the quantum ground state of these structures above the pump threshold of self-organization, by mapping the atomic dynamics of the self-organized crystal to a Bose-Hubbard model. We find that the quantum ground state of the self-organized structure can be the one of a Mott-insulator or a superfluid, depending on the pump strength of the driving laser. For very large pump strengths, where the intracavity intensity is maximum and one would expect a Mott-insulator state, we find intervals of parameters where the system is superfluid. These states could be realized in existing experimental setups.
Alkaline-earth and ytterbium cold atomic gases make it possible to simulate SU(N)-symmetric fermionic systems in a very controlled fashion. Such a high symmetry is expected to give rise to a variety of novel phenomena ranging from molecular Luttinger liquids to (symmetry- protected) topological phases. We review some of the phases that can be stabilized in a one dimensional lattice. The physics of this multicomponent Fermi gas turns out to be much richer and more exotic than in the standard SU(2) case. For N > 2, the phase diagram is quite rich already in the case of the single-band model, including a molecular Luttinger liquid (with dominant superfluid instability in the N-particle channel) for incommensurate fillings, as well as various Mott-insulating phases occurring at commensurate fillings. Particular attention will be paid to the cases with additional orbital degree of freedom (which is accessible experimentally either by taking into account two atomic states or by putting atoms in the p-band levels). We introduce two microscopic models which are relevant for these cases and discuss their symmetries and strong coupling limits. More intriguing phase diagrams are then presented including, for instance, symmetry protected topological phases characterized by non-trivial edge states.
Some thoughts regarding pairing in atomic Fermi gases were considered, meant for starting discussion on the topic.