Do you want to publish a course? Click here

KMT-2019-BLG-0797: binary-lensing event occurring on a binary stellar system

76   0   0.0 ( 0 )
 Added by Cheongho Han
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the microlensing event KMT-2019-BLG-0797. The light curve of the event exhibits two anomalous features from a single-lens single-source model, and we aim to reveal the nature of the anomaly. It is found that a model with two lenses plus a single source (2L1S model) can explain one feature of the anomaly, but the other feature cannot be explained. We test various models and find that both anomalous features can be explained by introducing an extra source to a 2L1S model (2L2S model), making the event the third confirmed case of a 2L2S event, following on MOA-2010-BLG-117 and OGLE-2016-BLG-1003. It is estimated that the extra source comprises $sim 4%$ of the $I$-band flux from the primary source. Interpreting the event is subject to a close--wide degeneracy. According to the close solution, the lens is a binary consisting of two brown dwarfs with masses $(M_1, M_2)sim (0.034, 0.021)~M_odot$, and it is located at a distance of $dlsim 8.2$~kpc. According to the wide solution, on the other hand, the lens is composed of an object at the star/brown-dwarf boundary and an M dwarf with masses $(M_1, M_2)sim (0.06, 0.33)~M_odot$ located at $dlsim 7.7$~kpc. The source is composed of a late-G-dwarf/early-K-dwarf primary and an early-to-mid M-dwarf companion.



rate research

Read More

We present the analysis of the microlensing event KMT-2018-BLG-1743. The light curve of the event, with a peak magnification $A_{rm peak}sim 800$, exhibits two anomaly features, one around the peak and the other on the falling side of the light curve. An interpretation with a binary lens and a single source (2L1S) cannot describe the anomalies. By conducting additional modeling that includes an extra lens (3L1S) or an extra source (2L2S) relative to a 2L1S interpretation, we find that 2L2S interpretations with a planetary lens system and a binary source best explain the observed light curve with $Deltachi^2sim 188$ and $sim 91$ over the 2L1S and 3L1S solutions, respectively. Assuming that these $Deltachi^2$ values are adequate for distinguishing the models, the event is the fourth 2L2S event and the second 2L2S planetary event. The 2L2S interpretations are subject to a degeneracy, resulting in two solutions with $s>1.0$ (wide solution) and $s<1.0$ (close solution). The masses of the lens components and the distance to the lens are $(M_{rm host}/M_odot, M_{rm planet}/M_{rm J}, D_{rm L}/{rm kpc}) sim (0.19^{+0.27}_{-0.111}, 0.25^{+0.34}_{-0.14}, 6.48^{+0.94}_{-1.03})$ and $sim (0.42^{+0.34}_{-0.25}, 1.61^{+1.30}_{-0.97}, 6.04^{+0.93}_{-1.27})$ according to the wide and close solutions, respectively. The source is a binary composed of an early G dwarf and a mid M dwarf. The values of the relative lens-source proper motion expected from the two degenerate solutions, $mu_{rm wide}sim 2.3 $mas yr$^{-1}$ and $mu_{rm close} sim 4.1 $mas yr$^{-1}$, are substantially different, and thus the degeneracy can be broken by resolving the lens and source from future high-resolution imaging observations.
We analyze the microlensing event OGLE-2019-BLG-0304, whose light curve exhibits two distinctive features: a deviation in the peak region and a second bump appearing $sim 61$~days after the main peak. Although a binary-lens model can explain the overall features, it leaves subtle but noticeable residuals in the peak region. We find that the residuals can be explained by the presence of either a planetary companion located close to the primary of the binary lens (3L1S model) or an additional close companion to the source (2L2S model). Although the 3L1S model is favored over the 2L2S model, with $Deltachi^2sim 8$, securely resolving the degeneracy between the two models is difficult with the currently available photometric data. According to the 3L1S interpretation, the lens is a planetary system, in which a planet with a mass $0.51^{+0.51}_{-0.23}~M_{rm J}$ is in an S-type orbit around a binary composed of stars with masses $0.27^{+0.27}_{-0.12}~M_odot$ and $0.10^{+0.10}_{-0.04}~M_odot$. According to the 2L2S interpretation, on the other hand, the source is composed of G- and K-type giant stars, and the lens is composed of a low-mass M dwarf and a brown dwarf with masses $0.12^{+0.12}_{-0.05}~M_odot$ and $0.045^{+0.045}_{-.019}~M_odot$, respectively. The event illustrates the need for through model testing in the interpretation of lensing events with complex features in light curves.
We investigate the gravitational microlensing event KMT-2019-BLG-1715, of which light curve shows two short-term anomalies from a caustic-crossing binary-lensing light curve: one with a large deviation and the other with a small deviation. We identify five pairs of solutions, in which the anomalies are explained by adding an extra lens or source component in addition to the base binary-lens model. We resolve the degeneracies by applying a method, in which the measured flux ratio between the first and second source stars is compared with the flux ratio deduced from the ratio of the source radii. Applying this method leaves a single pair of viable solutions, in both of which the major anomaly is generated by a planetary-mass third body of the lens, and the minor anomaly is generated by a faint second source. A Bayesian analysis indicates that the lens comprises three masses: a planet-mass object with $sim 2.6~M_{rm J}$ and binary stars of K and M dwarfs lying in the galactic disk. We point out the possibility that the lens is the blend, and this can be verified by conducting high-resolution followup imaging for the resolution of the lens from the source.
We report the discovery of a planet in a binary that was discovered from the analysis of the microlensing event OGLE-2018-BLG-1700. We identify the triple nature of the lens from the fact that the complex anomaly pattern can be decomposed into two parts produced by two binary-lens events, in which one binary pair has a very low mass ratio of $sim 0.01$ between the lens components and the other pair has a mass ratio of $sim 0.3$. We find two sets of degenerate solutions, in which one solution has a projected separation between the primary and its stellar companion less than the angular Einstein radius $thetae$ (close solution), while the other solution has a separation greater than $thetae$ (wide solution). From the Bayesian analysis with the constraints of the event time scale and angular Einstein radius together with the location of the source lying in the far disk behind the bulge, we find that the planet is a super-Jupiter with a mass of $4.4^{+3.0}_{-2.0}~M_{rm J}$ and the stellar binary components are early and late M-type dwarfs with masses $0.42^{+0.29}_{-0.19}~M_odot$ and $0.12^{+0.08}_{-0.05}~M_odot$, respectively, and the planetary system is located at a distance of $D_{rm L}=7.6^{+1.2}_{-0.9}~{rm kpc}$. The planet is a circumstellar planet according to the wide solution, while it is a circumbinary planet according to the close solution. The projected primary-planet separation is $2.8^{+3.2}_{-2.5}~{rm au}$ commonly for the close and wide solutions, but the primary-secondary binary separation of the close solution, $0.75^{+0.87}_{-0.66}~{rm au}$, is widely different from the separation, $10.5^{+12.1}_{-9.2}~{rm au}$, of the wide solution.
132 - N. Miyake , A. Udalski , T. Sumi 2012
We report the extremely high magnification (A > 1000) binary microlensing event OGLE-2007-BLG-514. We obtained good coverage around the double peak structure in the light curve via follow-up observations from different observatories. The binary lens model that includes the effects of parallax (known orbital motion of the Earth) and orbital motion of the lens yields a binary lens mass ratio of q = 0.321 +/- 0.007 and a projected separation of s = 0.072 +/- 0.001$ in units of the Einstein radius. The parallax parameters allow us to determine the lens distance D_L = 3.11 +/- 0.39 kpc and total mass M_L=1.40 +/- 0.18 M_sun; this leads to the primary and secondary components having masses of M_1 = 1.06 +/- 0.13 M_sun and M_2 = 0.34 +/- 0.04 M_sun, respectively. The parallax model indicates that the binary lens system is likely constructed by the main sequence stars. On the other hand, we used a Bayesian analysis to estimate probability distributions by the model that includes the effects of xallarap (possible orbital motion of the source around a companion) and parallax (q = 0.270 +/- 0.005, s = 0.083 +/- 0.001). The primary component of the binary lens is relatively massive with M_1 = 0.9_{-0.3}^{+4.6} M_sun and it is at a distance of D_L = 2.6_{-0.9}^{+3.8} kpc. Given the secure mass ratio measurement, the companion mass is therefore M_2 = 0.2_{-0.1}^{+1.2} M_sun. The xallarap model implies that the primary lens is likely a stellar remnant, such as a white dwarf, a neutron star or a black hole.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا