Do you want to publish a course? Click here

A possible binary system of a stellar remnant in the high magnification gravitational microlensing event OGLE-2007-BLG-514

133   0   0.0 ( 0 )
 Added by Noriyuki Miyake
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the extremely high magnification (A > 1000) binary microlensing event OGLE-2007-BLG-514. We obtained good coverage around the double peak structure in the light curve via follow-up observations from different observatories. The binary lens model that includes the effects of parallax (known orbital motion of the Earth) and orbital motion of the lens yields a binary lens mass ratio of q = 0.321 +/- 0.007 and a projected separation of s = 0.072 +/- 0.001$ in units of the Einstein radius. The parallax parameters allow us to determine the lens distance D_L = 3.11 +/- 0.39 kpc and total mass M_L=1.40 +/- 0.18 M_sun; this leads to the primary and secondary components having masses of M_1 = 1.06 +/- 0.13 M_sun and M_2 = 0.34 +/- 0.04 M_sun, respectively. The parallax model indicates that the binary lens system is likely constructed by the main sequence stars. On the other hand, we used a Bayesian analysis to estimate probability distributions by the model that includes the effects of xallarap (possible orbital motion of the source around a companion) and parallax (q = 0.270 +/- 0.005, s = 0.083 +/- 0.001). The primary component of the binary lens is relatively massive with M_1 = 0.9_{-0.3}^{+4.6} M_sun and it is at a distance of D_L = 2.6_{-0.9}^{+3.8} kpc. Given the secure mass ratio measurement, the companion mass is therefore M_2 = 0.2_{-0.1}^{+1.2} M_sun. The xallarap model implies that the primary lens is likely a stellar remnant, such as a white dwarf, a neutron star or a black hole.



rate research

Read More

We report the discovery of a planet in a binary that was discovered from the analysis of the microlensing event OGLE-2018-BLG-1700. We identify the triple nature of the lens from the fact that the complex anomaly pattern can be decomposed into two parts produced by two binary-lens events, in which one binary pair has a very low mass ratio of $sim 0.01$ between the lens components and the other pair has a mass ratio of $sim 0.3$. We find two sets of degenerate solutions, in which one solution has a projected separation between the primary and its stellar companion less than the angular Einstein radius $thetae$ (close solution), while the other solution has a separation greater than $thetae$ (wide solution). From the Bayesian analysis with the constraints of the event time scale and angular Einstein radius together with the location of the source lying in the far disk behind the bulge, we find that the planet is a super-Jupiter with a mass of $4.4^{+3.0}_{-2.0}~M_{rm J}$ and the stellar binary components are early and late M-type dwarfs with masses $0.42^{+0.29}_{-0.19}~M_odot$ and $0.12^{+0.08}_{-0.05}~M_odot$, respectively, and the planetary system is located at a distance of $D_{rm L}=7.6^{+1.2}_{-0.9}~{rm kpc}$. The planet is a circumstellar planet according to the wide solution, while it is a circumbinary planet according to the close solution. The projected primary-planet separation is $2.8^{+3.2}_{-2.5}~{rm au}$ commonly for the close and wide solutions, but the primary-secondary binary separation of the close solution, $0.75^{+0.87}_{-0.66}~{rm au}$, is widely different from the separation, $10.5^{+12.1}_{-9.2}~{rm au}$, of the wide solution.
115 - C. Han , A. Udalski , A. Gould 2017
We present the analysis of OGLE-2016-BLG-0613, for which the lensing light curve appears to be that of a typical binary-lens event with two caustic spikes but with a discontinuous feature on the trough between the spikes. We find that the discontinuous feature was produced by a planetary companion to the binary lens. We find 4 degenerate triple-lens solution classes, each composed of a pair of solutions according to the well-known wide/close planetary degeneracy. One of these solution classes is excluded due to its relatively poor fit. For the remaining three pairs of solutions, the most-likely primary mass is about $M_1sim 0.7,M_odot$ while the planet is a super-Jupiter. In all cases the system lies in the Galactic disk, about half-way toward the Galactic bulge. However, in one of these three solution classes, the secondary of the binary system is a low-mass brown dwarf, with relative mass ratios (1 : 0.03 : 0.003), while in the two others the masses of the binary components are comparable. These two possibilities can be distinguished in about 2024 when the measured lens-source relative proper motion will permit separate resolution of the lens and source.
136 - Y. Tsapras , A. Cassan , C. Ranc 2019
We present the analysis of stellar binary microlensing event OGLE-2015-BLG-0060 based on observations obtained from 13 different telescopes. Intensive coverage of the anomalous parts of the light curve was achieved by automated follow-up observations from the robotic telescopes of the Las Cumbres Observatory. We show that, for the first time, all main features of an anomalous microlensing event are well covered by follow-up data, allowing us to estimate the physical parameters of the lens. The strong detection of second-order effects in the event light curve necessitates the inclusion of longer-baseline survey data in order to constrain the parallax vector. We find that the event was most likely caused by a stellar binary-lens with masses $M_{star1} = 0.87 pm 0.12 M_{odot}$ and $M_{star2} = 0.77 pm 0.11 M_{odot}$. The distance to the lensing system is 6.41 $pm 0.14$ kpc and the projected separation between the two components is 13.85 $pm 0.16$ AU. Alternative interpretations are also considered.
We present the analysis of microlensing event OGLE-2006-BLG-284, which has a lens system that consists of two stars and a gas giant planet with a mass ratio of $q_p = (1.26pm 0.19) times 10^{-3}$ to the primary. The mass ratio of the two stars is $q_s = 0.289pm 0.011$, and their projected separation is $s_s = 2.1pm 0.7,$AU, while the projected separation of the planet from the primary is $s_p = 2.2pm 0.8,$AU. For this lens system to have stable orbits, the three-dimensional separation of either the primary and secondary stars or the planet and primary star must be much larger than that these projected separations. Since we do not know which is the case, the system could include either a circumbinary or a circumstellar planet. Because there is no measurement of the microlensing parallax effect or lens system brightness, we can only make a rough Bayesian estimate of the lens system masses and brightness. We find host star and planet masses of $M_{L1} = 0.35^{+0.30}_{-0.20},M_odot$, $M_{L2} = 0.10^{+0.09}_{-0.06},M_odot$, and $m_p = 144^{+126}_{-82},M_oplus$, and the $K$-band magnitude of the combined brightness of the host stars is $K_L = 19.7^{+0.7}_{-1.0}$. The separation between the lens and source system will be $sim 90,$mas in mid-2020, so it should be possible to detect the host system with follow-up adaptive optics or Hubble Space Telescope observations.
69 - C. Han , A. Udalski , V. Bozza 2017
Due to the nature depending on only the gravitational field, microlensing, in principle, provides an important tool to detect faint and even dark brown dwarfs. However, the number of identified brown dwarfs is limited due to the difficulty of the lens mass measurement that is needed to check the substellar nature of the lensing object. In this work, we report a microlensing brown dwarf discovered from the analysis of the gravitational binary-lens event OGLE-2014-BLG-1112. We identify the brown-dwarf nature of the lens companion by measuring the lens mass from the detections of both microlens-parallax and finite-source effects. We find that the companion has a mass of $(3.03 pm 0.78)times 10^{-2} M_odot$ and it is orbiting a solar-type primary star with a mass of $1.07 pm 0.28 M_odot$. The estimated projected separation between the lens components is $9.63 pm 1.33$ au and the distance to the lens is $4.84 pm 0.67$ kpc. We discuss the usefulness of space-based microlensing observations in detecting brown dwarfs through the channel of binary-lens events.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا