No Arabic abstract
We present the analysis of the microlensing event KMT-2018-BLG-1743. The light curve of the event, with a peak magnification $A_{rm peak}sim 800$, exhibits two anomaly features, one around the peak and the other on the falling side of the light curve. An interpretation with a binary lens and a single source (2L1S) cannot describe the anomalies. By conducting additional modeling that includes an extra lens (3L1S) or an extra source (2L2S) relative to a 2L1S interpretation, we find that 2L2S interpretations with a planetary lens system and a binary source best explain the observed light curve with $Deltachi^2sim 188$ and $sim 91$ over the 2L1S and 3L1S solutions, respectively. Assuming that these $Deltachi^2$ values are adequate for distinguishing the models, the event is the fourth 2L2S event and the second 2L2S planetary event. The 2L2S interpretations are subject to a degeneracy, resulting in two solutions with $s>1.0$ (wide solution) and $s<1.0$ (close solution). The masses of the lens components and the distance to the lens are $(M_{rm host}/M_odot, M_{rm planet}/M_{rm J}, D_{rm L}/{rm kpc}) sim (0.19^{+0.27}_{-0.111}, 0.25^{+0.34}_{-0.14}, 6.48^{+0.94}_{-1.03})$ and $sim (0.42^{+0.34}_{-0.25}, 1.61^{+1.30}_{-0.97}, 6.04^{+0.93}_{-1.27})$ according to the wide and close solutions, respectively. The source is a binary composed of an early G dwarf and a mid M dwarf. The values of the relative lens-source proper motion expected from the two degenerate solutions, $mu_{rm wide}sim 2.3 $mas yr$^{-1}$ and $mu_{rm close} sim 4.1 $mas yr$^{-1}$, are substantially different, and thus the degeneracy can be broken by resolving the lens and source from future high-resolution imaging observations.
We investigate the gravitational microlensing event KMT-2019-BLG-1715, of which light curve shows two short-term anomalies from a caustic-crossing binary-lensing light curve: one with a large deviation and the other with a small deviation. We identify five pairs of solutions, in which the anomalies are explained by adding an extra lens or source component in addition to the base binary-lens model. We resolve the degeneracies by applying a method, in which the measured flux ratio between the first and second source stars is compared with the flux ratio deduced from the ratio of the source radii. Applying this method leaves a single pair of viable solutions, in both of which the major anomaly is generated by a planetary-mass third body of the lens, and the minor anomaly is generated by a faint second source. A Bayesian analysis indicates that the lens comprises three masses: a planet-mass object with $sim 2.6~M_{rm J}$ and binary stars of K and M dwarfs lying in the galactic disk. We point out the possibility that the lens is the blend, and this can be verified by conducting high-resolution followup imaging for the resolution of the lens from the source.
We present the analysis of a very high-magnification ($Asim 900$) microlensing event KMT-2019-BLG-1953. A single-lens single-source (1L1S) model appears to approximately delineate the observed light curve, but the residuals from the model exhibit small but obvious deviations in the peak region. A binary lens (2L1S) model with a mass ratio $qsim 2times 10^{-3}$ improves the fits by $Deltachi^2=181.8$, indicating that the lens possesses a planetary companion. From additional modeling by introducing an extra planetary lens component (3L1S model) and an extra source companion (2L2S model), it is found that the residuals from the 2L1S model further diminish, but claiming these interpretations is difficult due to the weak signals with $Deltachi^2=16.0$ and $13.5$ for the 3L1S and 2L2L models, respectively. From a Bayesian analysis, we estimate that the host of the planets has a mass of $M_{rm host}=0.31^{+0.37}_{-0.17}~M_odot$ and that the planetary system is located at a distance of $D_{rm L}=7.04^{+1.10}_{-1.33}~{rm kpc}$ toward the Galactic center. The mass of the securely detected planet is $M_{rm p}=0.64^{+0.76}_{-0.35}~M_{rm J}$. The signal of the potential second planet could have been confirmed if the peak of the light curve had been more densely observed by followup observations, and thus the event illustrates the need for intensive followup observations for very high-magnification events even in the current generation of high-cadence surveys.
We present the analyses of two microlensing events, OGLE-2018-BLG-0567 and OGLE-2018-BLG-0962. In both events, the short-lasting anomalies were densely and continuously covered by two high-cadence surveys. The light-curve modeling indicates that the anomalies are generated by source crossings over the planetary caustics induced by planetary companions to the hosts. The estimated planet/host separation (scaled to the angular Einstein radius $theta_{rm E}$) and mass ratio are $(s, q) = (1.81, 1.24times10^{-3})$ and $(s, q) = (1.25, 2.38times10^{-3})$, respectively. From Bayesian analyses, we estimate the host and planet masses as $(M_{rm h}, M_{rm p}) = (0.24_{-0.13}^{+0.16},M_{odot}, 0.32_{-0.16}^{+0.34},M_{rm J})$ and $(M_{rm h}, M_{rm p}) = (0.55_{-0.29}^{+0.32},M_{odot}, 1.37_{-0.72}^{+0.80},M_{rm J})$, respectively. These planetary systems are located at a distance of $7.07_{-1.15}^{+0.93},{rm kpc}$ for OGLE-2018-BLG-0567 and $6.47_{-1.73}^{+1.04},{rm kpc}$ for OGLE-2018-BLG-0962, suggesting that they are likely to be near the Galactic bulge. The two events prove the capability of current high-cadence surveys for finding planets through the planetary-caustic channel. We find that most published planetary-caustic planets are found in Hollywood events in which the source size strongly contributes to the anomaly cross section relative to the size of the caustic.
We aim to find missing microlensing planets hidden in the unanalyzed lensing events of previous survey data. For this purpose, we conduct a systematic inspection of high-magnification microlensing events, with peak magnifications $A_{rm peak}gtrsim 30$, in the data collected from high-cadence surveys in and before the 2018 season. From this investigation, we identify an anomaly in the lensing light curve of the event KMT-2018-BLG-1025. The analysis of the light curve indicates that the anomaly is caused by a very low mass-ratio companion to the lens. We identify three degenerate solutions, in which the ambiguity between a pair of solutions (solutions B) is caused by the previously known close--wide degeneracy, and the degeneracy between these and the other solution (solution A) is a new type that has not been reported before. The estimated mass ratio between the planet and host is $qsim 0.8times 10^{-4}$ for the solution A and $qsim 1.6times 10^{-4}$ for the solutions B. From the Bayesian analysis conducted with measured observables, we estimate that the masses of the planet and host and the distance to the lens are $(M_{rm p}, M_{rm h}, D_{rm L})sim (6.1~M_oplus, 0.22~M_odot, 6.7~{rm kpc})$ for the solution A and $sim (4.4~M_oplus, 0.08~M_odot, 7.5~{rm kpc})$ for the solutions B. The planet mass is in the category of a super-Earth regardless of the solutions, making the planet the eleventh super-Earth planet, with masses lying between those of Earth and the Solar systems ice giants, discovered by microlensing.
KMT-2016-BLG-2605, with planet-host mass ratio $q=0.012pm 0.001$, has the shortest Einstein timescale, $t_e = 3.41pm 0.13,$days, of any planetary microlensing event to date. This prompts us to examine the full sample of 7 short ($t_e<7,$day) planetary events with good $q$ measurements. We find that six have clustered Einstein radii $theta_e = 115pm 20,muas$ and lens-source relative proper motions $mu_relsimeq 9.5pm 2.5,masyr$. For the seventh, these two quantities could not be measured. These distributions are consistent with a Galactic-bulge population of very low-mass (VLM) hosts near the hydrogen-burning limit. This conjecture could be verified by imaging at first adaptive-optics light on next-generation (30m) telescopes. Based on a preliminary assessment of the sample, planetary companions (i.e., below the deuterium-burning limit) are divided into genuine planets, formed in their disks by core accretion, and very low-mass brown dwarfs, which form like stars. We discuss techniques for expanding the sample, which include taking account of the peculiar anomaly dominated morphology of the KMT-2016-BLG-2605 light curve.