Do you want to publish a course? Click here

An efficient, concatenated, bosonic code for additive Gaussian noise

72   0   0.0 ( 0 )
 Added by Kosuke Fukui
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Bosonic codes offer noise resilience for quantum information processing. A common type of noise in this setting is additive Gaussian noise, and a long-standing open problem is to design a concatenated code that achieves the hashing bound for this noise channel. Here we achieve this goal using a Gottesman-Kitaev-Preskill (GKP) code to detect and discard error-prone qubits, concatenated with a quantum parity code to handle the residual errors. Our method employs a linear-time decoder and has applications in a wide range of quantum computation and communication scenarios.



rate research

Read More

We give necessary and sufficient conditions for a Gaussian quantum channel to have a dilation involving a passive, i.e., number-preserving unitary. We then establish a normal form of such channels: any passively dilatable channel is the result of applying passive unitaries to the input and output of a Gaussian additive channel. The latter combine the state of the system with that of the environment by means of a multi-mode beamsplitter.
A complete analysis of multi-mode bosonic Gaussian channels is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode bosonic Gaussian channels and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. It allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.
Extendibility of bosonic Gaussian states is a key issue in continuous-variable quantum information. We show that a bosonic Gaussian state is $k$-extendible if and only if it has a Gaussian $k$-extension, and we derive a simple semidefinite program, whose size scales linearly with the number of local modes, to efficiently decide $k$-extendibility of any given bosonic Gaussian state. When the system to be extended comprises one mode only, we provide a closed-form solution. Implications of these results for the steerability of quantum states and for the extendibility of bosonic Gaussian channels are discussed. We then derive upper bounds on the distance of a $k$-extendible bosonic Gaussian state to the set of all separable states, in terms of trace norm and Renyi relative entropies. These bounds, which can be seen as Gaussian de Finetti theorems, exhibit a universal scaling in the total number of modes, independently of the mean energy of the state. Finally, we establish an upper bound on the entanglement of formation of Gaussian $k$-extendible states, which has no analogue in the finite-dimensional setting.
Summoning retrieves quantum information, prepared somewhere in spacetime, at another specified point in spacetime, but this task is limited by the quantum no-cloning principle and the speed-of-light bound. We develop a thorough mathematical framework for summoning quantum information in a relativistic system and formulate a quantum summoning protocol for any valid configuration of causal diamonds in spacetime. For single-qubit summoning, we present a protocol based on a Calderbank-Shor-Steane code that decreases the space complexity for encoding by a factor of two compared to the previous best result and reduces the gate complexity from scaling as the cube to the square of the number of causal diamonds. Our protocol includes decoding whose gate complexity scales linearly with the number of causal diamonds. Our thorough framework for quantum summoning enables full specification of the protocol, including spatial and temporal implementation and costs, which enables quantum summoning to be a well posed protocol for relativistic quantum communication purposes.
We discuss a method to construct quantum codes correcting amplitude damping errors via code concatenation. The inner codes are chosen as asymmetric Calderbank-Shor-Steane (CSS) codes. By concatenating with outer codes correcting symmetric errors, many new codes with good parameters are found, which are better than the amplitude damping codes obtained by any previously known construction.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا