Do you want to publish a course? Click here

On quantum additive Gaussian noise channels

97   0   0.0 ( 0 )
 Added by Robert Koenig
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We give necessary and sufficient conditions for a Gaussian quantum channel to have a dilation involving a passive, i.e., number-preserving unitary. We then establish a normal form of such channels: any passively dilatable channel is the result of applying passive unitaries to the input and output of a Gaussian additive channel. The latter combine the state of the system with that of the environment by means of a multi-mode beamsplitter.



rate research

Read More

Bosonic codes offer noise resilience for quantum information processing. A common type of noise in this setting is additive Gaussian noise, and a long-standing open problem is to design a concatenated code that achieves the hashing bound for this noise channel. Here we achieve this goal using a Gottesman-Kitaev-Preskill (GKP) code to detect and discard error-prone qubits, concatenated with a quantum parity code to handle the residual errors. Our method employs a linear-time decoder and has applications in a wide range of quantum computation and communication scenarios.
The set of quantum Gaussian channels acting on one bosonic mode can be classified according to the action of the group of Gaussian unitaries. We look for bounds on the classical capacity for channels belonging to such a classification. Lower bounds can be efficiently calculated by restricting to Gaussian encodings, for which we provide analytical expressions.
The capacity-achieving input distribution of the discrete-time, additive white Gaussian noise (AWGN) channel with an amplitude constraint is discrete and seems difficult to characterize explicitly. A dual capacity expression is used to derive analytic capacity upper bounds for scalar and vector AWGN channels. The scalar bound improves on McKellips bound and is within 0.1 bits of capacity for all signal-to-noise ratios (SNRs). The two-dimensional bound is within 0.15 bits of capacity provably up to 4.5 dB, and numerical evidence suggests a similar gap for all SNRs.
As with classical information, error-correcting codes enable reliable transmission of quantum information through noisy or lossy channels. In contrast to the classical theory, imperfect quantum channels exhibit a strong kind of synergy: there exist pairs of discrete memoryless quantum channels, each of zero quantum capacity, which acquire positive quantum capacity when used together. Here we show that this superactivation phenomenon also occurs in the more realistic setting of optical channels with attenuation and Gaussian noise. This paves the way for its experimental realization and application in real-world communications systems.
A complete analysis of multi-mode bosonic Gaussian channels is proposed. We clarify the structure of unitary dilations of general Gaussian channels involving any number of bosonic modes and present a normal form. The maximum number of auxiliary modes that is needed is identified, including all rank deficient cases, and the specific role of additive classical noise is highlighted. By using this analysis, we derive a canonical matrix form of the noisy evolution of n-mode bosonic Gaussian channels and of their weak complementary counterparts, based on a recent generalization of the normal mode decomposition for non-symmetric or locality constrained situations. It allows us to simplify the weak-degradability classification. Moreover, we investigate the structure of some singular multi-mode channels, like the additive classical noise channel that can be used to decompose a noisy channel in terms of a less noisy one in order to find new sets of maps with zero quantum capacity. Finally, the two-mode case is analyzed in detail. By exploiting the composition rules of two-mode maps and the fact that anti-degradable channels cannot be used to transfer quantum information, we identify sets of two-mode bosonic channels with zero capacity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا