Do you want to publish a course? Click here

Concatenated Codes for Amplitude Damping

64   0   0.0 ( 0 )
 Added by Tyler Jackson
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

We discuss a method to construct quantum codes correcting amplitude damping errors via code concatenation. The inner codes are chosen as asymmetric Calderbank-Shor-Steane (CSS) codes. By concatenating with outer codes correcting symmetric errors, many new codes with good parameters are found, which are better than the amplitude damping codes obtained by any previously known construction.



rate research

Read More

59 - Yingkai Ouyang , Rui Chao 2018
The increasing interest in using quantum error correcting codes in practical devices has heightened the need for designing quantum error correcting codes that can correct against specialized errors, such as that of amplitude damping errors which model photon loss. Although considerable research has been devoted to quantum error correcting codes for amplitude damping, not so much attention has been paid to having these codes simultaneously lie within the decoherence free subspace of their underlying physical system. One common physical system comprises of quantum harmonic oscillators, and constant-excitation quantum codes can be naturally stabilized within them. The purpose of this paper is to give constant-excitation quantum codes that not only correct amplitude damping errors, but are also immune against permutations of their underlying modes. To construct such quantum codes, we use the nullspace of a specially constructed matrix based on integer partitions.
We introduce the concept of generalized concatenated quantum codes. This generalized concatenation method provides a systematical way for constructing good quantum codes, both stabilizer codes and nonadditive codes. Using this method, we construct families of new single-error-correcting nonadditive quantum codes, in both binary and nonbinary cases, which not only outperform any stabilizer codes for finite block length, but also asymptotically achieve the quantum Hamming bound for large block length.
We present a comprehensive architectural analysis for a fault-tolerant quantum computer based on cat codes concatenated with outer quantum error-correcting codes. For the physical hardware, we propose a system of acoustic resonators coupled to superconducting circuits with a two-dimensional layout. Using estimated near-term physical parameters for electro-acoustic systems, we perform a detailed error analysis of measurements and gates, including CNOT and Toffoli gates. Having built a realistic noise model, we numerically simulate quantum error correction when the outer code is either a repetition code or a thin rectangular surface code. Our next step toward universal fault-tolerant quantum computation is a protocol for fault-tolerant Toffoli magic state preparation that significantly improves upon the fidelity of physical Toffoli gates at very low qubit cost. To achieve even lower overheads, we devise a new magic-state distillation protocol for Toffoli states. Combining these results together, we obtain realistic full-resource estimates of the physical error rates and overheads needed to run useful fault-tolerant quantum algorithms. We find that with around 1,000 superconducting circuit components, one could construct a fault-tolerant quantum computer that can run circuits which are intractable for classical supercomputers. Hardware with 32,000 superconducting circuit components, in turn, could simulate the Hubbard model in a regime beyond the reach of classical computing.
188 - Zeyang Liao , M. Al-Amri , 2012
Quantum entanglement is a critical resource for quantum information and quantum computation. However, entanglement of a quantum system is subjected to change due to the interaction with the environment. One typical result of the interaction is the amplitude damping that usually results in the reduction of the entanglement. Here we propose a protocol to protect quantum entanglement from the amplitude damping by applying Hadamard and CNOT gates. As opposed to some recently studied methods, the scheme presented here does not require weak measurement in the reversal process, leading to a faster recovery of entanglement. We propose a possible experimental implementation based on linear optical system.
We consider error correction procedures designed specifically for the amplitude damping channel. We analyze amplitude damping errors in the stabilizer formalism. This analysis allows a generalization of the [4,1] `approximate amplitude damping code of quant-ph/9704002. We present this generalization as a class of [2(M+1),M] codes and present quantum circuits for encoding and recovery operations. We also present a [7,3] amplitude damping code based on the classical Hamming code. All of these are stabilizer codes whose encoding and recovery operations can be completely described with Clifford group operations. Finally, we describe optimization options in which recovery operations may be further adapted according to the damping probability gamma.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا