No Arabic abstract
Bayesian Networks (BNs) have become a powerful technology for reasoning under uncertainty, particularly in areas that require causal assumptions that enable us to simulate the effect of intervention. The graphical structure of these models can be determined by causal knowledge, learnt from data, or a combination of both. While it seems plausible that the best approach in constructing a causal graph involves combining knowledge with machine learning, this approach remains underused in practice. We implement and evaluate 10 knowledge approaches with application to different case studies and BN structure learning algorithms available in the open-source Bayesys structure learning system. The approaches enable us to specify pre-existing knowledge that can be obtained from heterogeneous sources, to constrain or guide structure learning. Each approach is assessed in terms of structure learning effectiveness and efficiency, including graphical accuracy, model fitting, complexity, and runtime; making this the first paper that provides a comparative evaluation of a wide range of knowledge approaches for BN structure learning. Because the value of knowledge depends on what data are available, we illustrate the results both with limited and big data. While the overall results show that knowledge becomes less important with big data due to higher learning accuracy rendering knowledge less important, some of the knowledge approaches are actually found to be more important with big data. Amongst the main conclusions is the observation that reduced search space obtained from knowledge does not always imply reduced computational complexity, perhaps because the relationships implied by the data and knowledge are in tension.
We present a new approach for learning the structure of a treewidth-bounded Bayesian Network (BN). The key to our approach is applying an exact method (based on MaxSAT) locally, to improve the score of a heuristically computed BN. This approach allows us to scale the power of exact methods -- so far only applicable to BNs with several dozens of random variables -- to large BNs with several thousands of random variables. Our experiments show that our method improves the score of BNs provided by state-of-the-art heuristic methods, often significantly.
The graph of a Bayesian Network (BN) can be machine learned, determined by causal knowledge, or a combination of both. In disciplines like bioinformatics, applying BN structure learning algorithms can reveal new insights that would otherwise remain unknown. However, these algorithms are less effective when the input data are limited in terms of sample size, which is often the case when working with real data. This paper focuses on purely machine learned and purely knowledge-based BNs and investigates their differences in terms of graphical structure and how well the implied statistical models explain the data. The tests are based on four previous case studies whose BN structure was determined by domain knowledge. Using various metrics, we compare the knowledge-based graphs to the machine learned graphs generated from various algorithms implemented in TETRAD spanning all three classes of learning. The results show that, while the algorithms produce graphs with much higher model selection score, the knowledge-based graphs are more accurate predictors of variables of interest. Maximising score fitting is ineffective in the presence of limited sample size because the fitting becomes increasingly distorted with limited data, guiding algorithms towards graphical patterns that share higher fitting scores and yet deviate considerably from the true graph. This highlights the value of causal knowledge in these cases, as well as the need for more appropriate fitting scores suitable for limited data. Lastly, the experiments also provide new evidence that support the notion that results from simulated data tell us little about actual real-world performance.
Structure learning algorithms that learn the graph of a Bayesian network from observational data often do so by assuming the data correctly reflect the true distribution of the variables. However, this assumption does not hold in the presence of measurement error, which can lead to spurious edges. This is one of the reasons why the synthetic performance of these algorithms often overestimates real-world performance. This paper describes an algorithm that can be added as an additional learning phase at the end of any structure learning algorithm, and serves as a correction learning phase that removes potential false positive edges. The results show that the proposed correction algorithm successfully improves the graphical score of four well-established structure learning algorithms spanning different classes of learning in the presence of measurement error.
The connectivity aspect of connected autonomous vehicles (CAV) is beneficial because it facilitates dissemination of traffic-related information to vehicles through Vehicle-to-External (V2X) communication. Onboard sensing equipment including LiDAR and camera can reasonably characterize the traffic environment in the immediate locality of the CAV. However, their performance is limited by their sensor range (SR). On the other hand, longer-range information is helpful for characterizing imminent conditions downstream. By contemporaneously coalescing the short- and long-range information, the CAV can construct comprehensively its surrounding environment and thereby facilitate informed, safe, and effective movement planning in the short-term (local decisions including lane change) and long-term (route choice). In this paper, we describe a Deep Reinforcement Learning based approach that integrates the data collected through sensing and connectivity capabilities from other vehicles located in the proximity of the CAV and from those located further downstream, and we use the fused data to guide lane changing, a specific context of CAV operations. In addition, recognizing the importance of the connectivity range (CR) to the performance of not only the algorithm but also of the vehicle in the actual driving environment, the paper carried out a case study. The case study demonstrates the application of the proposed algorithm and duly identifies the appropriate CR for each level of prevailing traffic density. It is expected that implementation of the algorithm in CAVs can enhance the safety and mobility associated with CAV driving operations. From a general perspective, its implementation can provide guidance to connectivity equipment manufacturers and CAV operators, regarding the default CR settings for CAVs or the recommended CR setting in a given traffic environment.
Biopharmaceutical manufacturing is a rapidly growing industry with impact in virtually all branches of medicine. Biomanufacturing processes require close monitoring and control, in the presence of complex bioprocess dynamics with many interdependent factors, as well as extremely limited data due to the high cost and long duration of experiments. We develop a novel model-based reinforcement learning framework that can achieve human-level control in low-data environments. The model uses a probabilistic knowledge graph to capture causal interdependencies between factors in the underlying stochastic decision process, leveraging information from existing kinetic models from different unit operations while incorporating real-world experimental data. We then present a computationally efficient, provably convergent stochastic gradient method for policy optimization. Validation is conducted on a realistic application with a multi-dimensional, continuous state variable.