Do you want to publish a course? Click here

Multilingual Email Zoning

57   0   0.0 ( 0 )
 Added by Mariana Almeida
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The segmentation of emails into functional zones (also dubbed email zoning) is a relevant preprocessing step for most NLP tasks that deal with emails. However, despite the multilingual character of emails and their applications, previous literature regarding email zoning corpora and systems was developed essentially for English. In this paper, we analyse the existing email zoning corpora and propose a new multilingual benchmark composed of 625 emails in Portuguese, Spanish and French. Moreover, we introduce OKAPI, the first multilingual email segmentation model based on a language agnostic sentence encoder. Besides generalizing well for unseen languages, our model is competitive with current English benchmarks, and reached new state-of-the-art performances for domain adaptation tasks in English.



rate research

Read More

Content zoning can be understood as a segmentation of textual documents into zones. This is inspired by [6] who initially proposed an approach for the argumentative zoning of textual documents. With the prototypical CoZo+ engine, we focus on content zoning towards an automatic processing of textual streams while considering only the actors as the zones. We gain information that can be used to realize an automatic recognition of content for pre-defined actors. We understand CoZo+ as a necessary pre-step towards an automatic generation of summaries and to make intellectual ownership of documents detectable.
Recent years have brought about an interest in the challenging task of summarizing conversation threads (meetings, online discussions, etc.). Such summaries help analysis of the long text to quickly catch up with the decisions made and thus improve our work or communication efficiency. To spur research in thread summarization, we have developed an abstractive Email Thread Summarization (EmailSum) dataset, which contains human-annotated short (<30 words) and long (<100 words) summaries of 2549 email threads (each containing 3 to 10 emails) over a wide variety of topics. We perform a comprehensive empirical study to explore different summarization techniques (including extractive and abstractive methods, single-document and hierarchical models, as well as transfer and semisupervised learning) and conduct human evaluations on both short and long summary generation tasks. Our results reveal the key challenges of current abstractive summarization models in this task, such as understanding the senders intent and identifying the roles of sender and receiver. Furthermore, we find that widely used automatic evaluation metrics (ROUGE, BERTScore) are weakly correlated with human judgments on this email thread summarization task. Hence, we emphasize the importance of human evaluation and the development of better metrics by the community. Our code and summary data have been made available at: https://github.com/ZhangShiyue/EmailSum
In this paper we propose and investigate a novel end-to-end method for automatically generating short email responses, called Smart Reply. It generates semantically diverse suggestions that can be used as complete email responses with just one tap on mobile. The system is currently used in Inbox by Gmail and is responsible for assisting with 10% of all mobile responses. It is designed to work at very high throughput and process hundreds of millions of messages daily. The system exploits state-of-the-art, large-scale deep learning. We describe the architecture of the system as well as the challenges that we faced while building it, like response diversity and scalability. We also introduce a new method for semantic clustering of user-generated content that requires only a modest amount of explicitly labeled data.
Recently, it has been found that monolingual English language models can be used as knowledge bases. Instead of structural knowledge base queries, masked sentences such as Paris is the capital of [MASK] are used as probes. We translate the established benchmarks TREx and GoogleRE into 53 languages. Working with mBERT, we investigate three questions. (i) Can mBERT be used as a multilingual knowledge base? Most prior work only considers English. Extending research to multiple languages is important for diversity and accessibility. (ii) Is mBERTs performance as knowledge base language-independent or does it vary from language to language? (iii) A multilingual model is trained on more text, e.g., mBERT is trained on 104 Wikipedias. Can mBERT leverage this for better performance? We find that using mBERT as a knowledge base yields varying performance across languages and pooling predictions across languages improves performance. Conversely, mBERT exhibits a language bias; e.g., when queried in Italian, it tends to predict Italy as the country of origin.
Semantic parsing allows humans to leverage vast knowledge resources through natural interaction. However, parsers are mostly designed for and evaluated on English resources, such as CFQ (Keysers et al., 2020), the current standard benchmark based on English data generated from grammar rules and oriented towards Freebase, an outdated knowledge base. We propose a method for creating a multilingual, parallel dataset of question-query pairs, grounded in Wikidata, and introduce such a dataset called Compositional Wikidata Questions (CWQ). We utilize this data to train and evaluate semantic parsers for Hebrew, Kannada, Chinese and English, to better understand the current strengths and weaknesses of multilingual semantic parsing. Experiments on zero-shot cross-lingual transfer demonstrate that models fail to generate valid queries even with pretrained multilingual encoders. Our methodology, dataset and results will facilitate future research on semantic parsing in more realistic and diverse settings than has been possible with existing resources.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا