Do you want to publish a course? Click here

LPWAN in the TV White Spaces: A Practical Implementation and Deployment Experiences

98   0   0.0 ( 0 )
 Added by Mahbubur Rahman
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Low-Power Wide-Area Network (LPWAN) is an enabling Internet-of-Things (IoT) technology that supports long-range, low-power, and low-cost connectivity to numerous devices. To avoid the crowd in the limited ISM band (where most LPWANs operate) and cost of licensed band, the recently proposed SNOW (Sensor Network over White Spaces) is a promising LPWAN platform that operates over the TV white spaces. As it is a very recent technology and is still in its infancy, the current SNOW implementation uses the USRP devices as LPWAN nodes, which has high costs (~$750 USD per device) and large form-factors, hindering its applicability in practical deployment. In this paper, we implement SNOW using low-cost, low form-factor, low-power, and widely available commercial off-the-shelf (COTS) devices to enable its practical and large-scale deployment. Our choice of the COTS device (TI CC13x0: CC1310 or CC1350) consequently brings down the cost and form-factor of a SNOW node by 25x and 10x, respectively. Such implementation of SNOW on the CC13x0 devices, however, faces a number of challenges to enable link reliability and communication range. Our implementation addresses these challenges by handling peak-to-average power ratio problem, channel state information estimation, carrier frequency offset estimation, and near-far power problem. Our deployment in the city of Detroit, Michigan demonstrates that CC13x0-based SNOW can achieve uplink and downlink throughputs of 11.2kbps and 4.8kbps per node, respectively, over a distance of 1km. Also, the overall throughput in the uplink increases linearly with the increase in the number of SNOW nodes.



rate research

Read More

270 - Jordi Paillisse 2020
Enterprise Networks, over the years, have become more and more complex trying to keep up with new requirements that challenge traditional solutions. Just to mention one out of many possible examples, technologies such as Virtual LANs (VLANs) struggle to address the scalability and operational requirements introduced by Internet of Things (IoT) use cases. To keep up with these challenges we have identified four main requirements that are common across modern enterprise networks: (i) scalable mobility, (ii) endpoint segmentation, (iii) simplified administration, and (iv) resource optimization. To address these challenges we designed SDA (Software Defined Access), a solution for modern enterprise networks that leverages Software-Defined Networking (SDN) and other state of the art techniques. In this paper we present the design, implementation and evaluation of SDA. Specifically, SDA: (i) leverages a combination of an overlay approach with an event-driven protocol (LISP) to dynamically adapt to traffic and mobility patterns while preserving resources, and (ii) enforces dynamic endpoint groups for scalable segmentation with low operational burden. We present our experience with deploying SDA in two real-life scenarios: an enterprise campus, and a large warehouse with mobile robots. Our evaluation shows that SDA, when compared with traditional enterprise networks, can (i) reduce overall data plane forwarding state up to 70% thanks to a reactive protocol using a centralized routing server, and (ii) reduce by an order of magnitude the handover delays in scenarios of massive mobility with respect to other approaches. Finally, we discuss lessons learned while deploying and operating SDA, and possible optimizations regarding the use of an event-driven protocol and group-based segmentation.
Ookami is a computer technology testbed supported by the United States National Science Foundation. It provides researchers with access to the A64FX processor developed by Fujitsu in collaboration with RIK{Xi}N for the Japanese path to exascale computing, as deployed in Fugaku, the fastest computer in the world. By focusing on crucial architectural details, the ARM-based, multi-core, 512-bit SIMD-vector processor with ultrahigh-bandwidth memory promises to retain familiar and successful programming models while achieving very high performance for a wide range of applications. We review relevant technology and system details, and the main body of the paper focuses on initial experiences with the hardware and software ecosystem for micro-benchmarks, mini-apps, and full applications, and starts to answer questions about where such technologies fit into the NSF ecosystem.
Currently, we have witnessed a myriad of solutions that benefit from programmable hardware. The 5G Core (5GC) can and should also benefit from such paradigm to offload certain functions to the dataplane. In this work, we designed and implemented a P4-based solution for traffic identification and chaining using the Netronome Agilo SmartNIC. The solution here presented is deployed in-between the RAN and UPF (User Plane Function) so that traffic coming from the RAN is identified and chained using SRv6 based on different rules defined by the control plane. The traffic identification and the construction of the SRv6 list of segments are done entirely in the SmartNIC. A minimalist Proof-of-Concept (PoC) was deployed and evaluated to show that this function is perfectly capable to build service function chainings in a transparent and efficient way.
Inferring the quality of streaming video applications is important for Internet service providers, but the fact that most video streams are encrypted makes it difficult to do so. We develop models that infer quality metrics (ie, startup delay and resolution) for encrypted streaming video services. Our paper builds on previous work, but extends it in several ways. First, the model works in deployment settings where the video sessions and segments must be identified from a mix of traffic and the time precision of the collected traffic statistics is more coarse (eg, due to aggregation). Second, we develop a single composite model that works for a range of different services (i.e., Netflix, YouTube, Amazon, and Twitch), as opposed to just a single service. Third, unlike many previous models, the model performs predictions at finer granularity (eg, the precise startup delay instead of just detecting short versus long delays) allowing to draw better conclusions on the ongoing streaming quality. Fourth, we demonstrate the model is practical through a 16-month deployment in 66 homes and provide new insights about the relationships between Internet speed and the quality of the corresponding video streams, for a variety of services; we find that higher speeds provide only minimal improvements to startup delay and resolution.
Motivated by the growing popularity of smart TVs, we present a large-scale measurement study of smart TVs by collecting and analyzing their network traffic from two different vantage points. First, we analyze aggregate network traffic of smart TVs in-the-wild, collected from residential gateways of tens of homes and several different smart TV platforms, including Apple, Samsung, Roku, and Chromecast. In addition to accessing video streaming and cloud services, we find that smart TVs frequently connect to well-known as well as platform-specific advertising and tracking services (ATS). Second, we instrument Roku and Amazon Fire TV, two popular smart TV platforms, by setting up a controlled testbed to systematically exercise the top-1000 apps on each platform, and analyze their network traffic at the granularity of the individual apps. We again find that smart TV apps connect to a wide range of ATS, and that the key players of the ATS ecosystems of the two platforms are different from each other and from that of the mobile platform. Third, we evaluate the (in)effectiveness of state-of-the-art DNS-based blocklists in filtering advertising and tracking traffic for smart TVs. We find that personally identifiable information (PII) is exfiltrated to platform-related Internet endpoints and third parties, and that blocklists are generally better at preventing exposure of PII to third parties than to platform-related endpoints. Our work demonstrates the segmentation of the smart TV ATS ecosystem across platforms and its differences from the mobile ATS ecosystem, thus motivating the need for designing privacy-enhancing tools specifically for each smart TV platform.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا