No Arabic abstract
We present a detailed low-energy muon spin rotation and x-ray magnetic circular dichroism (XMCD) investigation of the magnetic structure in ultra-thin tetragonal (T)-CuO films. The measured muon-spin polarization decay indicates an antiferromagnetic (AFM) order with a transition temperature higher than 200K. The XMCD signal obtained around the Cu $L_{2,3}$ edges indicates the presence of pinned Cu$^{2+}$ moments that are parallel to the sample surface, and additionally, isotropic paramagnetic moments. The pinning of some of the Cu moments is caused by an AFM ordering consisting of moments that lie most likely in the plane of the film. Moreover, pinned moments show a larger orbital magnetic moment contribution with an approximate ratio of $m_{orb}/m_{spin} = 2$, indicating that these spins are located at sites with reduced symmetry. Some fractions of the pinned moments remain pinned from an AFM background even at 360K, indicating that $T_N >$ 360K. A simple model could explain qualitatively these experimental findings; however, it is in contrast to theoretical predictions, showing that the magnetic properties of ultra-thin T-CuO films differ from bulk expectations and is more complex.
We have investigated the nanoscale switching properties of strain-engineered BiFeO3 thin films deposited on LaAlO3 substrates using a combination of scanning probe techniques. Polarized Raman spectral analysis indicate that the nearly-tetragonal films have monoclinic (Cc) rather than P4mm tetragonal symmetry. Through local switching-spectroscopy measurements and piezoresponse force microscopy we provide clear evidence of ferroelectric switching of the tetragonal phase but the polarization direction, and therefore its switching, deviates strongly from the expected (001) tetragonal axis. We also demonstrate a large and reversible, electrically-driven structural phase transition from the tetragonal to the rhombohedral polymorph in this material which is promising for a plethora of applications.
The effect of high tensile strain and low dimensionality on the magnetic and electronic properties of CaMnO$_3$ ultrathin films, epitaxially grown on SrTiO$_3$ substrates, are experimentally studied and theoretically analyzed. By means of ab initio calculations, we find that, both, the high strain produced by the substrate and the presence of the free surface contribute to the stabilization of an in-plane ferromagnetic coupling, giving rise to a non-zero net magnetic moment in the ultrathin films. Coupled with this change in the magnetic order we find an insulator-metal transition triggered by the quantum confinement and the tensile epitaxial strain. Accordingly, our magnetic measurements in 3nm ultrathin films show a ferromagnetic hysteresis loop, absent in the bulk compound due to its G-type antiferromagnetic structure.
In recent years, antiferromagnetic spintronics has received much attention since ideal antiferromagnets do not produce stray fields and are much more stable to external magnetic fields compared to materials with net magnetization. Akin to antiferromagnets, compensated ferrimagnets have zero net magnetization but have the potential for large spin-polarization and strong out of plane magnetic anisotropy, and, hence, are ideal candidates for high density memory applications. Here, we demonstrate that a fully compensated magnetic state with a tunable magnetic anisotropy is realized in Mn-Pt-Ga based tetragonal Heusler thin films. Furthermore, we show that a bilayer formed from a fully compensated and a partially compensated Mn-Pt-Ga layer, exhibits a large interfacial exchange bias up to room temperature. The present work establishes a novel design principle for spintronic devices that are formed from materials with similar elemental compositions and nearly identical crystal and electronic structures. Such devices are of significant practical value due to their improved properties such as thermal stability. The flexible nature of Heusler materials to achieve tunable magnetizations, and anisotropies within closely matched materials provides a new direction to the growing field of antiferromagnetic spintronics.
We report on the heteroepitaxial stabilization of YCrO3 ultra-thin films on LSAT (001) substrate. Using a combination of resonant X-ray absorption spectroscopy (XAS) and atomic multiplet cluster calculation, the electronic structure of YCrO3 thin film was investigated. Polarization dependent Cr L3,2 edge XAS measurement reveal the presence of an anomalous orbital polarization uncharacteristic of a 3d3 electronic system. Atomic multiplet calculations demonstrate the critical importance of charge transfer energy, Coulomb correlation strength and hopping interaction in stabilizing this unusual orbital polarized state likely connected to the bulk multiferroicity.
Imaging the magnetic configuration of thin-films has been a long-standing area of research. Since a few years, the emergence of two-dimensional ferromagnetic materials calls for innovation in the field of magnetic imaging. As the magnetic moments are extremely small, standard techniques like SQUID, torque magnetometry, magnetic force microscopy and Kerr effect microscopy are challenging and often lead to the detection of parasitic magnetic contributions or spurious effects. In this work, we report a new magnetic microscopy technique based on the combination of magnetic circular dichroism and Seebeck effect in semiconductor/ferromagnet bilayers. We implement this method with perpendicularly magnetized (Co/Pt) multilayers sputtered on Ge (111). We further show that the electrical detection of MCD is more sensitive than the Kerr magnetometry, especially in the ultra-thin film regime, which makes it particularly promising for the study of emergent two-dimensional ferromagnetic materials.