Do you want to publish a course? Click here

Electrical detection of magnetic circular dichroism: application to magnetic microscopy in ultra-thin ferromagnetic films

79   0   0.0 ( 0 )
 Added by Matthieu Jamet
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Imaging the magnetic configuration of thin-films has been a long-standing area of research. Since a few years, the emergence of two-dimensional ferromagnetic materials calls for innovation in the field of magnetic imaging. As the magnetic moments are extremely small, standard techniques like SQUID, torque magnetometry, magnetic force microscopy and Kerr effect microscopy are challenging and often lead to the detection of parasitic magnetic contributions or spurious effects. In this work, we report a new magnetic microscopy technique based on the combination of magnetic circular dichroism and Seebeck effect in semiconductor/ferromagnet bilayers. We implement this method with perpendicularly magnetized (Co/Pt) multilayers sputtered on Ge (111). We further show that the electrical detection of MCD is more sensitive than the Kerr magnetometry, especially in the ultra-thin film regime, which makes it particularly promising for the study of emergent two-dimensional ferromagnetic materials.



rate research

Read More

The difference in the transmission for left and right circularly polarised light though thin films on substrates in a magnetic field is used to obtain the magnetic circular dichroism of the film. However there are reflections at all the interfaces and these are also different for the two polarisations and generate the polar Kerr signal. In this paper the contribution to the differences to the total transmission from the transmission across interfaces as well as the differences in absorption in the film and the substrate are calculated. This gives a guide to when it is necessary to evaluate these corrections in order to obtain the real MCD from a measure of the differential transmission due to differential absorption in the film.
173 - T. K. Nath 2008
Magneto optic measurements are a very powerful tool for investigating the polarization of a conduction band as a function of temperature and are used here to study the polarization of the mobile electrons in 50nm LSMO (x=0.3) strained thin films grown epitaxially on single crystalline (001) LaAlO3 (LAO) and (001) lattice matched substrate (LSAT). The magnetic circular dichroism (MCD) has been investigated in magnetic fields up to 0.5 T and over a temperature range (10 to 450 K). The MCD spectra of both the films show a peak at the band gap at around 3 eV and the peak is found to be shifted towards lower energy side with the increase of temperature. A separate polaron peak (well known in insulating samples) appears at lower energy (about 1.8 eV) with the increase of temperature in all these metallic films. The rapid decrease in conduction band polarization in the film on LAO has strong implications for the use of these manganites in room temperature spintronics.
199 - S. Valencia , A. Gaupp , W. Gudat 2007
Surface magnetic properties of perovskite manganites have been a recurrent topic during last years since they play a major role in the implementation of magnetoelectronic devices. Magneto-optical techniques, such as X-ray magnetic circular dichroism, turn out to be a very efficient tool to study surface magnetism due to their sensitivity to magnetic and chemical variations across the sample depth. Nevertheless, the application of the sum rules for the determination of the spin magnetic moment might lead to uncertainties as large as 40% in case of Mn ions. To overcome this problem we present an alternative approach consisting of using X-ray magnetic circular dichroism in reflection geometry. Fit of the data by using a computer code based in a 4X4 matrix formalism leads to realistic results. In particular, we show that surface and interface roughness are of major relevance for a proper description of the experimental data and a correct interpretation of the results. By using such an approach we demonstrate the presence of a narrow surface region with strongly depressed magnetic properties in La2/3Ca1/3MnO3 thin films.
Magnetic Circular Dichroism (MCD) is a standard technique for the study of magnetic properties of materials in synchrotron beamlines. We present here a new scattering geometry in the Transmission Electron Microscope through which MCD can be observed with unprecedented spatial resolution. A convergent electron beam is used to scan a multilayer Fe/Au sample and record energy loss spectra. Differences in the spectra induced by the magnetic moments of the Fe atoms can be resolved with a resolution of 2 nm. This is a breakthrough achievement when compared both to the previous EMCD resolution (200 nm) or the best XMCD experiments (approx. 20 nm), with an improvement of two and one order of magnitude, respectively.
BiFeO$_3$ (BFO) shows both ferroelectricity and magnetic ordering at room temperature but its ferromagnetic component, which is due to spin canting, is negligible. Substitution of transition-metal atoms such as Co for Fe is known to enhance the ferromagnetic component in BFO. In order to reveal the origin of such magnetization enhancement, we performed soft x-ray absorption spectroscopy (XAS) and soft x-ray magnetic circular dichroism (XMCD) studies of BiFe$_{1-x}$Co$_x$O$_3$ ({it x} = 0 to 0.30) (BFCO) thin films grown on LaAlO$_3$(001) substrates. The XAS results indicated that the Fe and Co ions are in the Fe$^{3+}$ and Co$^{3+}$ states. The XMCD results showed that the Fe ions show ferromagnetism while the Co ions are antiferromagnetic at room temperature. The XAS and XMCD measurements also revealed that part of the Fe$^{3+}$ ions are tetrahedrally co-ordinated by oxygen ions but that the XMCD signals of the octahedrally coordinated Fe$^{3+}$ ions increase with Co content. The results suggest that an impurity phase such as the ferrimagnetic $gamma$-Fe$_2$O$_3$ which exists at low Co concentration decreases with increasing Co concentration and that the ferromagnetic component of the Fe$^{3+}$ ion in the octrahedral crystal fields increases with Co concentration, probably reflecting the increased canting of the Fe$^{3+}$ ions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا