Do you want to publish a course? Click here

Data driven Decision Support on Students Behavior using Fuzzy Based Approach

121   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Monitoring of students behavior in school needs further consideration in order to lessen the number of casualties in every term. The study designs a data driven decision support on students behavior utilizing Fuzzy Based Approach. The study successfully produces common behavioral problems of the student and able to give interventions for the improvement of students behavior. Student behavioral problems identified were absenteeism, tardiness and poor academic performance.



rate research

Read More

Rehabilitation assessment is critical to determine an adequate intervention for a patient. However, the current practices of assessment mainly rely on therapists experience, and assessment is infrequently executed due to the limited availability of a therapist. In this paper, we identified the needs of therapists to assess patients functional abilities (e.g. alternative perspective on assessment with quantitative information on patients exercise motions). As a result, we developed an intelligent decision support system that can identify salient features of assessment using reinforcement learning to assess the quality of motion and summarize patient specific analysis. We evaluated this system with seven therapists using the dataset from 15 patient performing three exercises. The evaluation demonstrates that our system is preferred over a traditional system without analysis while presenting more useful information and significantly increasing the agreement over therapists evaluation from 0.6600 to 0.7108 F1-scores ($p <0.05$). We discuss the importance of presenting contextually relevant and salient information and adaptation to develop a human and machine collaborative decision making system.
Clinical decision support tools (DST) promise improved healthcare outcomes by offering data-driven insights. While effective in lab settings, almost all DSTs have failed in practice. Empirical research diagnosed poor contextual fit as the cause. This paper describes the design and field evaluation of a radically new form of DST. It automatically generates slides for clinicians decision meetings with subtly embedded machine prognostics. This design took inspiration from the notion of Unremarkable Computing, that by augmenting the users routines technology/AI can have significant importance for the users yet remain unobtrusive. Our field evaluation suggests clinicians are more likely to encounter and embrace such a DST. Drawing on their responses, we discuss the importance and intricacies of finding the right level of unremarkableness in DST design, and share lessons learned in prototyping critical AI systems as a situated experience.
In this paper, we investigate how semantic relations between concepts extracted from medical documents can be employed to improve the retrieval of medical literature. Semantic relations explicitly represent relatedness between concepts and carry high informative power that can be leveraged to improve the effectiveness of retrieval functionalities of clinical decision support systems. We present preliminary results and show how relations are able to provide a sizable increase of the precision for several topics, albeit having no impact on others. We then discuss some future directions to minimize the impact of negative results while maximizing the impact of good results.
How to handle gender with machine learning is a controversial topic. A growing critical body of research brought attention to the numerous issues transgender communities face with the adoption of current automatic gender recognition (AGR) systems. In contrast, we explore how such technologies could potentially be appropriated to support transgender practices and needs, especially in non-Western contexts like Japan. We designed a virtual makeup probe to assist transgender individuals with passing, that is to be perceived as the gender they identify as. To understand how such an application might support expressing transgender individuals gender identity or not, we interviewed 15 individuals in Tokyo and found that in the right context and under strict conditions, AGR based systems could assist transgender passing.
In this short paper, we present early insights from a Decision Support System for Customer Support Agents (CSAs) serving customers of a leading accounting software. The system is under development and is designed to provide suggestions to CSAs to make them more productive. A unique aspect of the solution is the use of bandit algorithms to create a tractable human-in-the-loop system that can learn from CSAs in an online fashion. In addition to discussing the ML aspects, we also bring out important insights we gleaned from early feedback from CSAs. These insights motivate our future work and also might be of wider interest to ML practitioners.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا