No Arabic abstract
Light scalar fields that couple to matter through the Higgs portal mediate long range fifth forces. We show how the mixing of a light scalar with the Higgs field can lead to this fifth force being screened around macroscopic objects. This behaviour can only be seen by considering both scalar fields as dynamical, and is missed if the mixing between the Higgs field and the scalar field is not taken into account. We explain under which conditions the naive integrating out procedure fails, i.e. when the mass matrix of the Higgs-scalars system has a nearly vanishing mass eigenvalue. The resulting flat direction in field space can be lifted at the quadratic order in the presence of matter and the resulting fifth force mediated by the Higgs portal can be screened either when the gravitating objects are large enough or their surface Newton potential exceeds a threshold. Finally we discuss the implications of these results for nearly massless relaxion models.
Searches for invisible Higgs decays at the Large Hadron Collider constrain dark matter Higgs-portal models, where dark matter interacts with the Standard Model fields via the Higgs boson. While these searches complement dark matter direct-detection experiments, a comparison of the two limits depends on the coupling of the Higgs boson to the nucleons forming the direct-detection nuclear target, typically parameterized in a single quantity $f_N$. We evaluate $f_N$ using recent phenomenological and lattice-QCD calculations, and include for the first time the coupling of the Higgs boson to two nucleons via pion-exchange currents. We observe a partial cancellation for Higgs-portal models that makes the two-nucleon contribution anomalously small. Our results, summarized as $f_N=0.308(18)$, show that the uncertainty of the Higgs-nucleon coupling has been vastly overestimated in the past. The improved limits highlight that state-of-the-art nuclear physics input is key to fully exploiting experimental searches.
The correlation between the invisible Higgs branching ratio ($B_h^{rm inv} $) vs. dark matter (DM) direct detection ($sigma_p^{rm SI}$) in Higgs portal DM models is usually presented in the effective field theory (EFT) framework. This is fine for singlet scalar DM, but not in the singlet fermion DM (SFDM) or vector DM (VDM) models. In this paper, we derive the explicit expressions for this correlation within UV completions of SFDM and VDM models with Higgs portals, and discuss the limitation of the EFT approach. We show that there are at least two additional hidden parameter in $sigma_p^{rm SI}$ in the UV completions: the singlet-like scalar mass $m_2$ and its mixing angle $alpha$ with the SM Higgs boson ($h$). In particular, if the singlet-like scalar is lighter than the SM Higgs boson ($m_2 < m_h cos alpha / sqrt{1 + cos^2 alpha}$), the collider bound becomes weaker than the one based on EFT.
The clockwork mechanism allows extremely weak interactions and small mass scales to be understood in terms of the structure of a theory. A natural application of the clockwork mechanism is to the freeze-in mechanism for dark matter production. Here we consider a Higgs portal freeze-in dark matter model based on a scalar clockwork sector with a mass scale which is less than the Higgs boson mass. The dark matter scalar is the lightest scalar of the clockwork sector. Freeze-in dark matter is produced by the decay of thermal Higgs bosons to the clockwork dark matter scalars. We show that the mass of the dark matter scalar is typically in the 1-10 keV range and may be warm enough to have an observable effect on perturbation growth and Lyman-$alpha$ observations. Clockwork Higgs portal freeze-in models have a potentially observable collider phenomenology, with the Higgs boson decaying to missing energy in the form of pairs of long-lived clockwork sector scalars, plus a distribution of different numbers of quark and lepton particle-antiparticle pairs. The branching ratio to different numbers of quark and lepton pairs is determined by the clockwork sector parameters (the number of clockwork scalars $N$ and the clockwork charge $q$), which could therefore be determined experimentally if such Higgs decay modes are observed. In the case of a minimal Standard Model observable sector, the combination of nucleosynthesis and Lyman-$alpha$ constraints is likely to exclude on-shell Higgs decays to clockwork scalars, although off-shell Higgs decays would still be possible. On-shell Higgs decays to clockwork scalars can be consistent with cosmological constraints in simple extensions of the Standard Model with light singlet scalars.
Sterile neutrinos are one of the leading dark matter candidates. Their masses may originate from a vacuum expectation value of a scalar field. If the sterile neutrino couplings are very small and their direct coupling to the inflaton is forbidden by the lepton number symmetry, the leading dark matter production mechanism is the freeze-in scenario. We study this possibility in the neutrino mass range up to 1 GeV, taking into account relativistic production rates based on the Bose-Einstein statistics, thermal masses and phase transition effects. The specifics of the production mechanism and the dominant mode depend on the relation between the scalar and sterile neutrino masses as well as on whether or not the scalar is thermalized. We find that the observed dark matter abundance can be produced in all of the cases considered. We also revisit the freeze-in production of a Higgs portal scalar, pointing out the importance of a fusion mode, as well as the thermalization constraints.
Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first order electroweak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.